

Controller for Petersen Coils

REG-DPA

- Wall mounting version
- Panel-mount housing
- Standard DIN-rail assembly

1. Application

The freely programmable REG-DPA regulator is used in medium and high-voltage grids to control arc suppression coils (Petersen coils) that are adjustable under continuous load. It can also solve all other control, measurement and recording tasks related to the Petersen coil.

Control methods:

Classic

The regulator controls Petersen-coils in several ways. Depending on the requirements, the regulator can be set to a percentage or absolute detuning. For overhead transmission grids with high natural unbalance, a certain zero sequence voltage and detuning value can be set to balance between high neutral voltage displacement und right compensation. When an earth fault occurs, the regulator can correct the Petersen coil by the detuning and tune the grid to the resonance. There are a number of ways in which the regulator can control several Petersen coils in a compensation district.

Optional current injection

In some grid configurations, it is possible that the Petersen coil cannot be tuned in the traditional way. For example such situations are:

- Very balanced grids (cable grids)
- Measuring signal that is heavily distorted by crosstalk (non-linear consumer or generator in the grid area)
- Overhead transmission grids with asymmetrical conditions

The optional current injection can deal with all of these side-effects and accurately tune the Petersen coil to the real grid situation.

Resistor control (increase residual watt current)

It contains a freely configurable resistance control to increase the residual watt current supporting fault finding using the $\cos(\phi)$ method. A thermal image of that resistor is computed to protect the same as an independent function unit.

Take over control tasks for pulse location

The free programmability of the regulator enables it to perform special tasks, such as controlling a pulse cabinet.

Pulse locating is a method to search for earth faults in the medium voltage grid by introducing a pulse pattern to the fault current. The regulator can be equipped with a background program that controls and monitors the pulse locating unit. This ensures that the conditions for successful pulse locating are met

Control system / Communication

The REG-DPA regulator has a system bus (E-LAN) that enables it to communicate with other system devices.

A parallel (relay contacts) and serial remote control centre connection are available. The following protocols are available (additional protocols on request):

- IEC 60870 5 101 / 103 / 104
- IEC 61850
- DNP 3.0 over Ethernet
- DNP 3.0
- MODBUS RTU / MODBUS TCP
- SPABUS

2. Characteristics

Multimaster system architecture

The REG-DPA is part of a range of devices that is based on a standard hardware platform.

If multiple devices are connected through the system bus E-LAN, every bus participant can be configured or read from a single PC. In addition, several PCs can access individual system participants (multimaster).

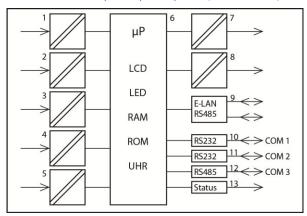


Figure 1: REG-DPA regulator functions

1	Voltage transducer (zero sequence voltage)	
2	Position signal (resistance sensor) for the coil	
3	Current transducer (e.g. current through the P-coil)	
4	Binary inputs	
5	Power supply	
6	Display and processing unit	
7	Binary outputs	
8	Analogue outputs	
9	E-LAN connection (2 x RS485 with repeater function)	
10	COM1, RS232	
11	COM2, RS232	
12	COM3, RS485	
13	Status - Signal (relay)	

2.1 Regulator functions

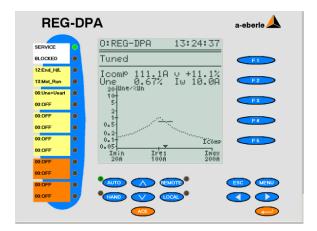


Figure 2: Regulation of the detuning

A change in the grid's switching status is recognized by a change in the zero sequence voltage. The regulator repositions the Petersen coil while taking into account the configurable conditions to the set detuning current.

The following data are displayed in addition to the regulator's status:

- Coil position
- Zero sequence voltage
- Detuning (v)
- Total active current in the grid over the fault location (Iw)
- The resonance curve and its parameters

The switching status is monitored through a complex evaluation of the zero sequence voltage (value and phase).

Regulation to percentage or absolute detuning current:

The regulator positions the Petersen coil according to the configured setpoint value and effective positioning tolerance.

Special requirements for the 110 kV grid

Additional parameters can be taken into account for high-voltage grids, such as a maximum continuous adjacent zero sequence voltage. The following conditions are also taken into account:

- Value of the allowable zero sequence voltage
- Compensation limit = Value of the detuning current that may not be exceeded

Page 2 Characteristics

Adjusting the Petersen coil during the earth fault:

The regulator can be configured so that the Petersen-coil can be corrected by compensation value during an earth fault. Additional corrections can be made through binary inputs.

Parallel operation of Petersen coils:

A number of methods are available to control Petersen coils that are switched in parallel.

- Parallel control with communication over E-LAN (master-slave)
- Parallel control without communication
- Parallel control with recognition of external grid coupling (only with optional current injection)

2.2 Recorder and logbook function

An integrated **recorder** continuously records the progression of the zero sequence voltage and the coil position. The time line diagram can both be displayed and evaluated on the regulator or on a PC. This integrated 'grid spy' enables long-term changes in the zero sequence voltage to be recorded and monitored. The configuration software WinEDC is used to evaluate and archive recorded data on the PC.

The progression of the zero sequence voltage Uen is also displayed as a line diagram. The time grid (feed rate) for the recording is adjustable. The stored values and the allocated time can be displayed using a keyboard or PC.

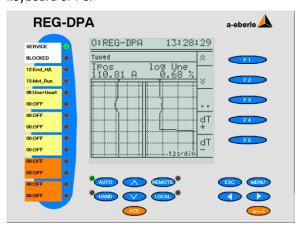


Figure 3: Recorderview

Important events are recorded in a **logbook** with date and time information and can be displayed on the screen or a PC statistic

2.3 Regulator statistics

Statistics mode displays the most important sum times and counters. This information can be used to determine how many tuning procedures were carried out in which time frame, and how many were successfully completed. It also enables you to recognize for how many tuning procedures the P-coil's adjustment range was insufficient.

Statistics mode also records the number of earth faults and increases in residual watt current that were carried out.

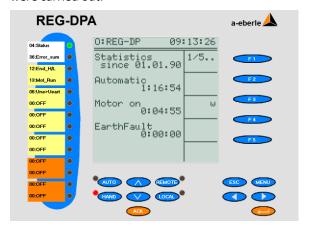


Figure 4: Statistics Page 1/5

2.4 Resistor control

The freely configurable and autonomous resistor control automatically connects a resistor to increase the residual watt current in the event of an earth fault. A resistor's load is monitored with a 'thermal image' whereby the current zero sequence voltage—is taken into account when it is connected. The connection is blocked in the event of over temperature. The remaining resistor connections are displayed in the screen until the limit temperature has been reached.

A recurring connection by transient earth faults can be suppressed.

A resistor can be connected manually through a binary input or the remote control system.

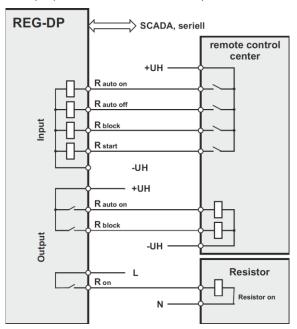


Figure 5: Example for the resistor control

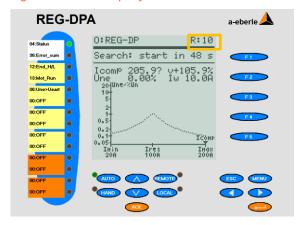


Figure 6: R:10 = Number of possible resistor cycles

2.5 Configuration

The configuration of the regulator is menu driven, and therefore very easy.

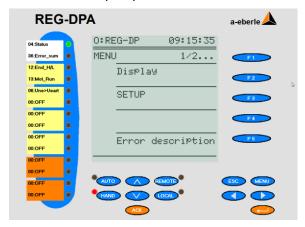


Figure 7: Regulator Menu

The putting into operation of the regulator and its configuration for the P-coil (e.g. linearization of the coil position) is largely automatic. The process' reactions are continuously monitored and checked for plausibility. Errors are analysed and displayed in the status bar. Additional information and troubleshooting tips can be viewed as an additional menu.

Page 4 Characteristics

3. Technical specifications

3.1 Regulations and standards

- IEC 61010-1
- CAN/CSA C22.2 No. 1010.1-92
- IEC 60255-22-1
- IEC 61326-1
- IEC 60529
- IEC 60068-1
- IEC 60688

IEC 61000-6-2

- IEC 61000-6-4
- IEC 61000-6-5

3.2 AC voltage inputs

AC voltage input (U _{en})	
Zero sequence voltage	0,1V 120V
Shape of the curve	Sinus
Frequency range	45506065 Hz
Internal consumption	$\leq U^2 / 100 \text{ k}\Omega$
Overload capacity	1,2 * 120V

(6

AC voltage input (U ₁₂)		
Synchronization voltage	0,1V 230V	
U ₁₂		
Shape of the curve	Sinus	
Frequency range	45506065 Hz	
Internal consumption	$\leq U^2 / 100 \text{ k}\Omega$	
Overload capacity	1,2 * 230V	

3.3 AC current inputs

AC current inputs (Ip und I2)		
Current range	1 A / 5 A (hardware- und soft- waremäßig wählbar)	
Shape of the curve	Sinus	
Frequency range	455065 Hz	
Internal consumption	≤20,5 VA	

Overload capacity	10 A continuous
	30 A for 10 s 60 A for 1 s
	60 A for 1 s
	500 A for 5 ms

3.4 Potentiometer input

Position signal (I _{Pos})		
Transmitter	Potentiometer	
Nominal value Rn	0,2 kΩ, 0,5 kΩ, 1 kΩ, 3 kΩ	
Measuring voltage	ca. 5 VDC	
Current selectable through jumper (pure)	1 mA (3 kOhm) 5 mA (600 Ohm) 10 mA (300 Ohm) 20 mA (150 Ohm)	

Error message when sensor breaks or is short circuited or when the voltage of the loop is outside of the measurement range.

3.5 Binary Inputs (BI)

Binary inputs (BI)	
Inputs E1 E16	
Control signals U _{st}	im Bereich AC/DC 48 V 250 V,
Shape of the curve, permissible	Rechteck, Sinus
48 V250 V H - Level L - Level	≥ 48 V < 10 V
Signal frequency	DC, 40 70 Hz
Input resistance	108 kΩ
Potential isolation	Optocoupler; each galvanically isolated from each other.
Debouncing	Software filter with integrated 50Hz filter

Technical specifications Page 5

3.6 Binary outputs (BO)

Binary outputs (BO)	
R 1 R13 max. switching fre- quency	≤ 1 Hz
Potential isolation	Isolated from all device- internal potentials
Contact load	AC: 250 V, 5 A (cosφ = 1.0) AC: 250 V, 3 A (cosφ = 0.4) Switching capacity max. 1250 VA DC: 30 V, 5 A resistive DC: 30 V, 3.5 A L/R=7 ms DC: 110 V, 0.5 A resistive DC: 220 V, 0.3 A resistive Switching capacity max. 150 W
Inrush current	250 V AC, 30 V DC 10 A for max. 4 s
Switching operations	≥ 5·10 ⁵ electrical

3.8 Display

Display		
LC – Display	128 x 128 displays graphics	
Lighting	LED, switches off after 15 min	

Reference conditions		
Reference temperature	23°C ± 1 K	
Input quantities	U _E = 0 120V U ₁₂ = 0,1 230V I _E = 0 1A / 0 5A	
Auxiliary voltage	H = H _n ± 1 %	
Frequency	45 Hz65 Hz	
Shape of the curve	Sinusoidal, form factor 1.1107	
Burden (only for Characteristics E91E99)	R _n = 5 V / Y2 ± 1 %	
Other	IEC 60688 - Part 1	

3.7 Analogue outputs

20 mA - Analogue outputs		
Quantity	See order specifications	
Output range Y1Y2	-20 mA020 mA, Y1 and Y2 freely programmable	
Control limit	± 1.2 Y2	
Potential isolation	Optocoupler	
Burden range	0 ≤ R ≤ 8 V / Y2	
Alternating component	< 0.5% of Y2	

The output can be continuously short-circuited or operated open. The output connections are galvanically isolated from all of the other circuits.

Page 6 Technical specifications

3.9 Electrical safety

Electrical safety	
Safety class	I
Degree of pollution	2

Over-voltage category	II and III
Category III	Category II
Input circuits for current and voltage transducer	Control circuits, analogue inputs, analogue outputs, power supply, ELAN, COMs

Operating voltages					
50 V	120 V	230 V			
E-LAN, COM1 COM3 Analogue inputs, analogue outputs Inputs 1050 V	Voltage inputs, current inputs	Auxiliary voltage, sync voltage for binary inputs (E1E16, Relay outputs R1R13), status			

3.10 Power supply

Stromversorgung					
Characteristic	H1	H2			
AC	85264V	-			
DC	88280V	1872V			
Power consump- tion	≤ 33 VA	≤ 15 W			
Frequency	50 Hz / 60 Hz	-			
Microfuse	T1 250V	T2 250V			

The following applies to all characteristics:

Voltage dips of \leq 40 ms result neither in data loss nor malfunctions.

3.11 Electromagnetic compatibility

Electromagnetic compatibility					
EMC requirements	EN 61326-1 Equipment class A Continuous, un- monitored operation, industrial area and EN 61000-6-2 and 61000-6-4				
Interference emissions					
Conducted and radiated emission	EN 61326 Table 3 EN 61000-6-4				
Harmonic currents	EN 61000-3-2				
Voltage fluctuations and flicker	EN 61000-3-3				
Conducted and radiated emission	EN 61326 Table 3 EN 61000-6-4				
Disturbance immunity	EN 61326 Table A1 and EN 61000-6-2				
ESD	IEC 61000-6-5 6 kV/8 kV contact/air				
Electromagnetic fields	IEC 61000-4-3 80 – 2000 MHz: 10 V/m				
Fast transient	IEC 61000-4-4 4 kV/2 kV				
Surge voltages	IEC 61000-4-5 4 kV/2 kV				
Conducted HF signals	IEC 61000-4-6 150 kHz – 80 MHz: 10 V				
Power-frequency mag- netic fields	IEC 61000-4-8 100 A/m (50 Hz), contin- uous 1000 A/m (50 Hz), 1 s				
Voltage dips	IEC 61000-4-11 30% / 20 ms, 60% / 1 s				
Voltage interruptions	IEC 61000-4-11 100% / 5s				
Damped oscillations	IEC 61000-4-12, Class 3, 2.5 kV				

Technical specifications Page 7

3.12 Climatic conditions

Ambient conditions	
Temperature range Transport and storage function	-15 °C +60 °C -25 °C +65 °C
Dry cold	IEC 60068-2-1, - 15 °C / 16 h
Dry heat	IEC 60068-2-2, + 65 °C / 16 h
Humid heat constant	IEC 60068-2-78 + 40 °C / 93% / 2 days
Humid heat cyclical	IEC 60068-2-30 12+12 h, 6 cycles +55 °C / 93%
Drop and topple over	IEC 60068-2-31 100 mm drop height, unpackaged
Vibration	IEC 60255-21-1, Class 1
Shock	IEC 60255-21-2, Class 1
Earthquake resistance	IEC 60255-21-3, Class 1

3.13 Storage

Storage	
Firmware and recorder data Characteristic S2	Flash storage
Device characteristics and calibration data	serial EEPROM with ≥ 1000 k write/read cycles
Other data and recorder data Characteristic S1	SDRAM, battery-backed (plug- in lithium battery), backup to flash storage possible

3.14 Mechanical design

Mechanical design	
Housing	Sheet steel, RAL 7035 gray
Height Width Overall depth Mounting depth Mass	288 mm 216 mm 114 mm 87 mm ≤ 3 kg
Housing doors Front panel	with silica glass plastic, RAL 7035 gray, on aluminium supports
Control panel cutout Height Width Protection type	282 mm 210 mm
Rain Test	3R UL50
In-panel mounting	in conformity with DIN 41494 Part 5

3.15 Optical Interface

The REG-DPA regulator can also be directly connected via a fibre optic cable interface. Sending and receiving devices are available for glass and plastic fibre optic cables.

In addition, it can be choose between various mechanical connection possibilities (ST or FSMA connection). Features V13 to V19 give an overview of the various possibilities

3.16 Electrical logical interface

 $\label{logic_logic} \mbox{Logic level of receiving output}: \mbox{CMOS}$

(Uh_{min}: > 0.9VCC, UI_{max} < 0.1VCC @ Io = 1mA)

Logic level of receiving intput: CMOS

(Uh_{min}: > 0.7VCC, Ul_{max} < 0.3VCC), Schmitt-Trigger

Page 8 Technical specifications

3.17 Optical transmitter

Product	Туре	Fibre	Pmin [dBm] ¹⁾	Pmax [dBm] ¹⁾
Glass-ST Glass-SMA	HFBR- 1414-T HFBR-1404 λ = 820nm	50/125μm NA=0,2	-19,8	-12,8
		62,5/125μm NA=0,275	-16,0	-9,0
		100/140μm NA=0,3	-10,5	-3,5
		200μm HCS NA=0,37	-6,2	+1,8
POF_ST	HFBR- 1515B	1mm POF	-7,5	-3,5
	$\lambda = 650$ nm	200μm HCS	-18,0	-8,5
POF_SMA	HFBR- 1505C λ = 650nm	1mm POF	-6,2	0,0
		200μm HCS	-16,9	-8,5

3.18 Optical receiver

Product	Type Fibre		Pmin [dBm] ²⁾	Pmax [dBm] ²⁾	
Glass-ST Glass-SMA	HFBR- 2412-T HFBR-2402 0 5MBd λ = 820nm	100/140μm NA=0,3	-24,0	-10,0	
POF_ST	2515B	1mm POF	-20,0	0,0	
		200μm HCS	-22,0	-2,0	
POF_SMA	HFBR- 2505C 0 10MBd λ = 650nm	1mm POF	-21,6	-2,0	
		200μm HCS	-23,0	-3,4	

4. General information about the connections

The regulator has three circuit boards / connection levels.



Figure 8: Internal structure of REG-DPA

On level 1 the auxiliary voltage, input voltage and currents, as well as the relay outputs, binary inputs, etc. are connected.

Level II contains the hardware for all control system connections is contained. The appropriate connection elements on Level II must be used for RS232 or RS485 connections. If an Ethernet connection is used, the corresponding connection on Level II is also available (must be connected for IEC 61850 or IEC 60870-5-104!).

The connection elements for fibre-optic cables (send and receive diodes as ST or FSMA connection) are mounted directly on the flange plate and can be connected there without having to open the device.

Figure 9: Fiber optic (ST-connection)

Figure 10: Fibre optic (FSMA-connection)

Furthermore, additional binary inputs and outputs as well as mA inputs and outputs can also be accommodated on Level II.

In total, two connection points are available and they can be **equipped with the following modules:**

Modul 1: 6 binary inputs AC/DC 48V250V	
Modul 1:	6 relay outputs
Modul 1:	2 x 20 mA- inputs
Modul 1:	2 x 20 mA- outputs

Level III contains the connections for the individual COM, E-LAN, the analogue inputs and outputs and the PT100 input

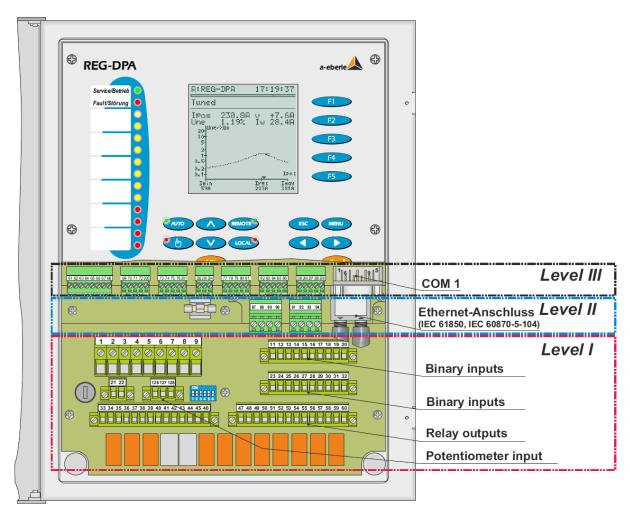


Figure 11: Location of the connector terminals

5. Terminal blocks

5.1 Level I

5.1.1 Binary outputs

	Nr.	Description		Function	Configuration	
	33		R3	NOC	freely programmable	
	34			Terminal		
	35		R4	NOC	freely programmable	
	36			Terminal		
	37		R5	NOC	freely programmable	
	38			Terminal		
	39	<u> </u>	R2	NCC	Higher	
	40			Terminal		
	41			Terminal		
	42			NOC		
	43		R1	NCC	Lower	
	44			Terminal		
_ 4	45	<u> </u>		Terminal]	
Levell	46			NOC		
Ľ	47		R6	NOC	freely programmable	
	48		R7	NOC	freely programmable	
	49		R8	NOC	freely programmable	
	50		R9	NOC	freely programmable	
	51		R10	NOC	freely programmable	
	52		R11	NOC	freely programmable	
	53		R6R11	Terminal		
	54		R13	NOC	closes at fault	
-	55] —		Terminal	Life-contact (Status)	
	56			NCC r	opens at fault	
	57	<u> </u>	R12	NOC	HAND	
	58	1 - 		Terminal		
	59			NCC	AUTO	

All of the REG-DPA's are freely programmable, but have default settings.

Page 11 Terminal blocks

5.1.2 Binary inputs

	Nr.	Description			Configuration
	11	Binary inputs	E1	+	Endswitch high
	12		E2	+	Endswitch low
	13		Terminal E1E2	-	
	14		E3	+	freely programmable
	15		E4	+	freely programmable
	16		E5	+	freely programmable
	17		E6	+	freely programmable
	18		E7	+	freely programmable
	19		E8	+	freely programmable
<u>–</u>	20		Terminal E3E8	-	
Levell	23		E9	+	freely programmable
	24		E10	+	freely programmable
	25		E11	+	freely programmable
	26		E12	+	freely programmable
	27		Terminal E9E11	-	
	28		E13	+	freely programmable
	29		E14	+	freely programmable
	30		E15	+	freely programmable
	31		E16	+	freely programmable
	32		Terminal E13E16	-	

Page 12 Terminal blocks

5.1.3 U_{ne} , U_{Sync} , I_p and auxiliary voltage

	Nr.	Description			Configuration
	1	Synchronisation voltage	(U _{sync})	L1	U ₁₂
	2			L2	_
	4	Zero sequence voltage	U _{ne}	n	U _{NE}
	5			е	
_	7	Stromeingang	Ip	k	I_p
Levell	8			1	
ت	21	Auxiliary voltage	U _H	L/(+)	U _H
	22			N/(-)	_
	126	Coil position	I _{pos}	Pot +	_
	127			Us	
	128			Pot-	

5.2 Level II (additional inputs and outputs)

5.2.1 Scada module

	Nr.	Descripiton	Function	Configuration
		Scada module		IEC
=				LON
LevelII				DNP 3.0
Fe				SPA Bus
				Modbus

5.2.2 Feature C01

6 additional binary inputs AC/DC 48...250V

	Nr.	Description	Function		Configuration
	100	Binary inputs	E17	+	freely programmable
	101		E18	+	freely programmable
e 1	102		E19	+	freely programmable
Module	103		E20	+	freely programmable
Š	104		E21	+	freely programmable
	105		E22	+	freely programmable
	106		Terminal E17E22	-	

Terminal blocks Page 13

5.2.3 Feature CO2

12 additional binary inputs AC/DC 48...250V

	Nr.	Description	Function		Configuration
	100	Binary inputs	E17	+	freely programmable
	101		E18	+	freely programmable
e 1	102		E19	+	freely programmable
Module 1	103		E20	+	freely programmable
δ	104		E21	+	freely programmable
	105		E22	+	freely programmable
	106		Terminal E17E22	-	
	107	Binary inputs	E23	+	freely programmable
	108		E24	+	freely programmable
e 1	109		E25	+	freely programmable
Module	110		E26	+	freely programmable
δ	111		E27	+	freely programmable
	112		E28	+	freely programmable
	113		Terminal E23E28	-	

5.2.4 Feature C03

6 additional relays (NO contacts)

	Nr.	Description	Function		Configuration
	100		R14	NOC	freely programmable
	101		R15	NOC	freely programmable
e 2	102		R16	NOC	freely programmable
Module	103		R17	NOC	freely programmable
Š	104		R18	NOC	freely programmable
	105		R19	NOC	freely programmable
	106		R14R19	Terminal	

Page 14 Terminal blocks

5.2.5 Feature C04

12 additional relays (NO contacts)

	Nr.	Description	Function		Configuration
	100		R14	NOC	freely programmable
	101		R15	NOC	freely programmable
e 2	102		R16	NOC	freely programmable
Module	103		R17	NOC	freely programmable
Š	104		R18	NOC	freely programmable
	105		R19	NOC	freely programmable
	106		R14R19	Terminal	
	107		R20	NOC	freely programmable
	108		R21	NOC	freely programmable
e 2	109		R22	NOC	freely programmable
Module	110		R23	NOC	freely programmable
δ	111		R24	NOC	freely programmable
	112		R25	NOC	freely programmable
	113		R20R25	Terminal	

5.2.6 Feature C05

6 additional binary inputs AC/DC 48...250V

6 additional relays (NO contacts)

	Nr.	Description	Function		Configuration
	100	Binary inputs	E17	+	freely programmable
	101		E18	+	freely programmable
e 1	102		E19	+	freely programmable
Module	103		E20	+	freely programmable
δ	104		E21	+	freely programmable
	105		E22	+	freely programmable
	106		E17E22	Terminal (-)	
	107		R14	NOC	freely programmable
	108		R15	NOC	freely programmable
e 2	109		R16	NOC	freely programmable
Module	110		R17	NOC	freely programmable
δ	111		R18	NOC	freely programmable
	112		R19	NOC	freely programmable
	113		R14R19	Terminal	

Terminal blocks Page 15

5.2.7 Feature C06

2 additional analogue 20mA inputs

	Nr.	Description	Function		Configuration
3	100	– Analogue input	E10	+	
	101			-	
Module	102	Analogue input	E11	+	
Σ	103	Analogue input		+	

5.2.8 Feature C07

4 additional analogue 20mA inputs

	Nr.	Description	Function		Configuration
3	100	Analogue input	E10	+	
n e	101	Analogue Input	LIO	-	
Module	102	- Analogue input	E11	+	
2	103			+	
3	104	- Analogue input	E12	+	
nle	105		LIZ	-	
lod	105 106	Analogue input	E13	+	
2	107	Analogue Iliput	L13	+	

5.2.9 Feature C08

2 additional analogue 20mA outputs

	Nr.	Description	Function		Configuration
3	m 100	- Analogue output	A10	+	
a n	101			-	
Module	102	Analogue output	A11	+	
2	103	Analogue output	AII	+	

5.2.10 Feature C09

4 additional analogue 20mA outputs

	Nr.	Description	Function		Configuration
3	100	Analogue output	A10	+	
	101	Analogue output	AIO	-	
Module	102 Analogue output	A11	+		
2	103	Allalogue output	AII.	+	
c	104	- Analogue output	A12	+	
n e	105			-	
Module	106	Analogue output	A13	+	
2	107	Analogue output	AIS	+	

Page 16 Terminal blocks

6. Block diagrams

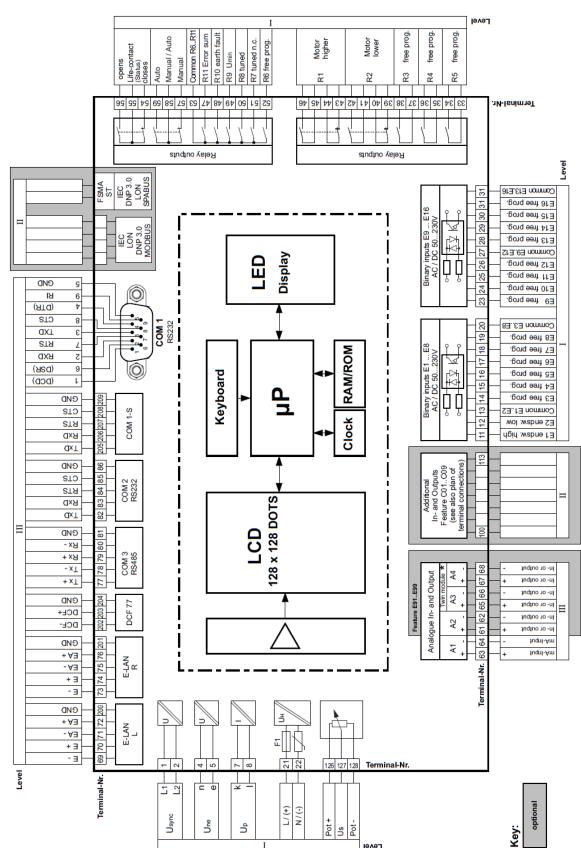


Figure 12: Overview of default configuration REG-DPA

Block diagrams Page 17

7. Housing technology

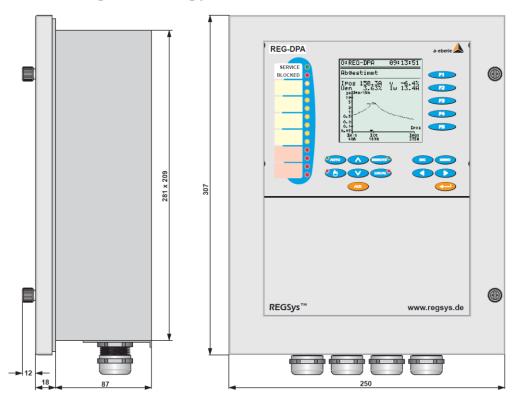


Figure 13: Mechanical dimensions REG-DPA

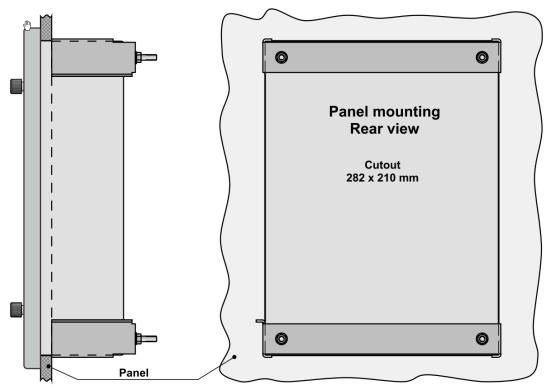


Figure 14: Mechanical dimensions, Panel mount housing

Page 18 Housing technology

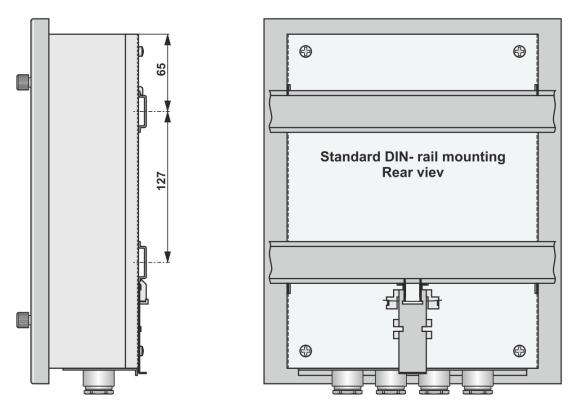


Figure 15: Mechanical dimensions, standard DIN-rail assembling

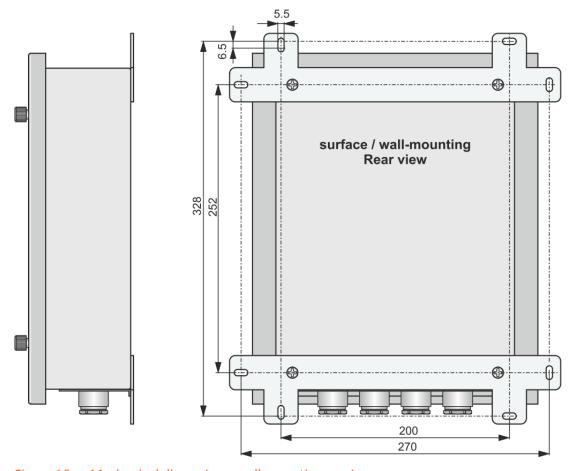


Figure 16: Mechanical dimensions, wall-mounting version

Housing technology Page 19

8. Interfaces

RS232 Interfaces

The REG-DPA regulator has two RS 232 serial interfaces (COM1, COM2); COM 1 is accessible on the front panel and COM 2 on the terminal strip. COM 2 is used to connect the regulator system to higher level control systems. Customer-specific protocols can be implemented through COM 2.

Connection elements

Connection element	
COM 1	Pin strip, sub min D on the front of the device, pin allocation as PC multipoint terminal connector
COM1S	plug connector (Level III)
COM 2	plug connector (Level III)
	plug connector (Level III)
Connection options	PC, terminal, modem, PLC
Number of data bits/protocol	Parity 8, even, off, odd
Transmission rate bit/s	1200, 2400, 4800, 9600, 19200, 38400, 57600, 76800, 115000
Handshake	RTS / CTS or X _{ON} / X _{OFF}

RS485 interfaces

- Connection to E-LAN
- Dual interface RS 485 with repeater function

E-LAN (Energy Local Area Network)

Characteristics

- 255 addressable participants
- Multi-master structure
- Integrated repeater function
- Open ring, bus or a mixture of bus and ring
- Protocol is based on SDLC/HDLC frames
- Transmission rate 62.5 kbit/s or 125 kbit/s
- Frame length 10 ... 30 Bytes
- medium-throughput approx. 100 frames/s

COM₃

Use to connect ≤ 15 random interface modules (ANA-D, BIN-D) to the regulator REG-DPA.

Basic REG-DPA connection to Petersen coil

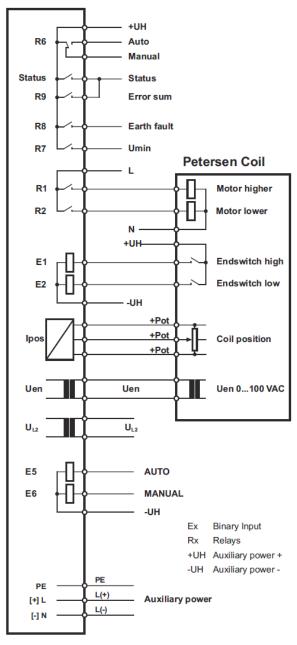


Figure 17: Connecting REG-DPA to a Petersen coil

Page 20 Interfaces

10. Optional current injection

There are situations in the grid in which classic regulation cannot be used to successfully tune the Petersen coil.

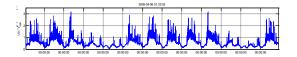


Figure 18: Flickering zero sequence voltage

- Flickering zero sequence voltage
- Very symmetrical grids (balanced)

We developed the optional current injection specifically for these cases.

The current injection creates a signal that is fed into the grid through the power auxiliary winding in the Petersen coil. The REG-DPA calculates a resonance curve based on the grid's response (zero sequence voltage).

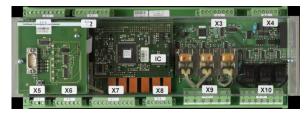


Figure 19: Current feed-in controller (CCI Controller)

10.1 Four connections to retrofit the current injection

The following connections have to be established if the current feed-in is to be retrofitted:

- Power supply 230 V AC (internally fused with 16 A)
- Communication connection between REG-DPA (COM3) and CCI controller; 4-wire RS 485 shielded telephone cable; distance CCI to REG-DPA up to 200 m
- Connection to the power auxiliary winding designed for 16 A; voltage-proof up to 500 V AC
- U_{en} measurement parallel to REG-DPA; Ex. see next pages

10.2 Technical specifications

10.2.1 CCI Controller power supply

Power supply AC Version			
Nominal voltage (U _n)	100240 V AC 100350 V DC		
Overload capacity	1.3 * U _n		
Overload for 1s	2 * U _n		
Power consumption	≤ 15 VA		
Frequency	DC or 50/60 Hz		
Voltage dip (100%)	< 50 ms		

Power supply DC Version			
Nominal voltage (U _n)	110 V DC ±20%		
Overload capacity	1.3 * U _n		
Overload for 1s	2 * U _n		
Power consumption	≤ 15 VA		
Voltage dip (100%)	< 50 ms		

10.2.2 CCI Controller measurement inputs

AC voltage inputs U1U3				
Voltage range U _{nom}				
with jumper without jumper	0120 V 0500 V			
Shape of the curve	Sine			
Frequency range	45 <u>50</u> 55 Hz			
Input resistance				
with jumper without jumper	60 kΩ 280 kΩ			
Permanent overload	U _{nom} *1.2			

AC voltage inputs L1L3	
Voltage range U _{nom}	0250 V
Shape of the curve	Sine
Frequency range	45 <u>50</u> 55 Hz
Input resistance	140 kΩ
Permanent overload	U _{nom} *1.2

AC power inputs I1I3				
Current range I _{nom}				
with jumper	05 A			
without jumper	025 A			
Shape of the curve	Sine			
Frequency range	45 <u>50</u> 55 Hz			
Power consumption	≤ 0.1 VA			
Permanent overload	I _{nom} *1.2			
Permanent	10 A			
≤ 10s	30 A			
≤ 1s	100 A			
≤ 5ms	500 A			

10.2.3 CCI Controller binary inputs

Binary inputs E1E6	
Input voltage	AC and DC
H - Level	
E1E2	< 80 V AC/DC
E3E4	< 10 V AC/DC
E5E6	< 65 V AC/DC
L - Level	
E1E2	< 40 V AC/DC
E3E4	< 5 V AC/DC
E5E6	< 45 V AC/DC
Signal frequency	DC65 Hz
Potential isolation	Optocoupler
Input resistance	
E1, E2	ca. 100 kΩ
E3, E4	ca. 5 kΩ
E5, E6	ca. 100 kΩ
Potential isolation	Optocoupler; all inputs
	galvanically isolated from
	each other

10.2.4 CCI Controller binary inputs

Relay outputs	
max. switching frequen-	≤ 1 kHz
су	
Contact load	AC:250 V, 5 A ($\cos \varphi = 1.0$)
	AC:250 V, 3 A ($\cos \varphi = 0.4$)
	DC switching capacity:
	250 V _{DC} : <= 75 W
	30 V _{DC} : <= 150 W
Switching operations	> 10 ⁵ electrical
Potential isolation	galvanically isolated from all device-internal potentials

10.3 Inductance (derating)

Inductance	
Quantity	2
Inductance	104 mH
Nominal frequency:	50 Hz
Voltage range	up to 550 V AC

10.4 Connection options for current injection to REG-DPA and Petersen coil

A magnetic coupling between the power auxiliary winding and the measuring transducer for Uo directly on the P-coil can affect the calculation results. We recommend the following interconnection options when measuring Uo in conjunction with the current injection.

Figure 20: Example of in-panel mounting: Current injection mounted directly into the motor drive box of the Petersen coil

10.4.1 Connections to measure Uo at open delta winding

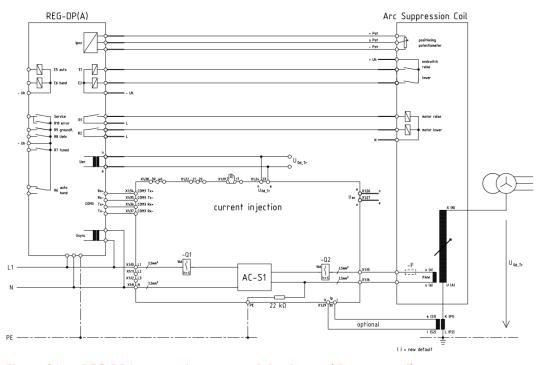


Figure 21: REG-DPA connection, current injection and Petersen coil;

10.4.2 Connections to measure U_{o} through separate/external measuring transducer

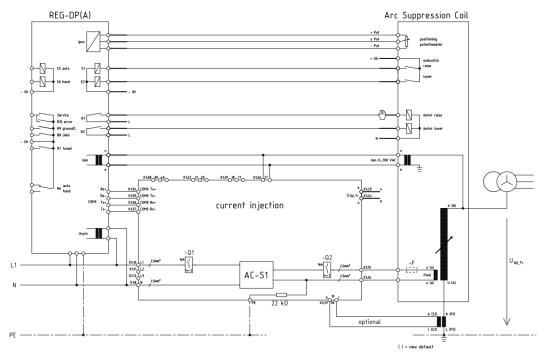


Figure 22: Uo measurement over external or remote voltage transducer

10.4.3 Connections for current injection when the power auxiliary winding is missing In this case, the power section of the current feed-in is connected to a separate feed-in transducer.

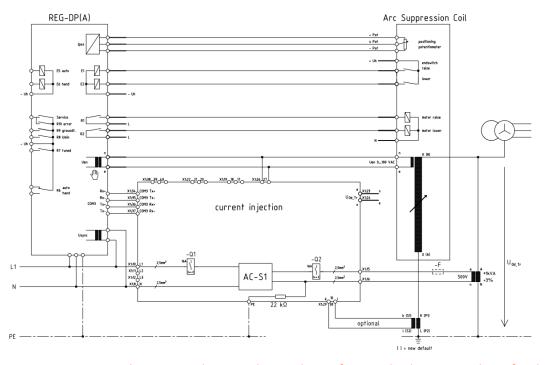


Figure 23: External power auxiliary winding and use of internal voltage transducer for the Petersen coil

10.4.4 Example of external feed-in transducer as spare power auxiliary winding (PAW)

i

NOTE! This transducer can only be used with the current injection. It is **not** a full replacement for a standard power auxiliary winding.

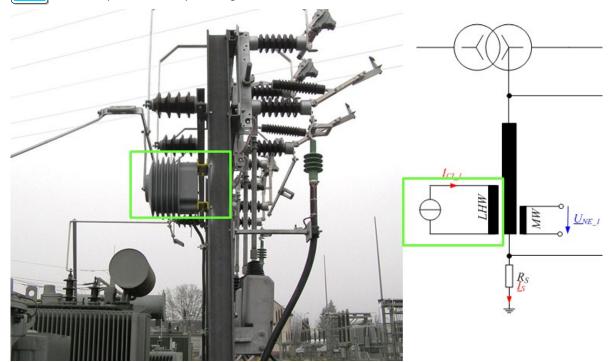


Figure 24: Spare power auxiliary winding (PAW) for current injection

The technical data for the transducer for a 20 kV grid are as follows:

Technical data for transducer for spare PAW			
Туре	single-phase		
Primary nominal voltage	$20 kV/\sqrt{3}$		
Secondary nominal voltage	500 V		
Class	3		
Nominal output/Nominal burden	1000 VA		

10.5 Design of current injection controller (CCI)

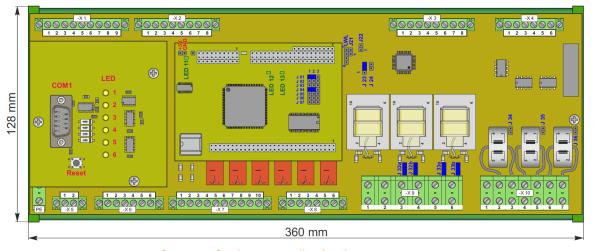


Figure 25: Dimensions of current feed-in controller (CCI)

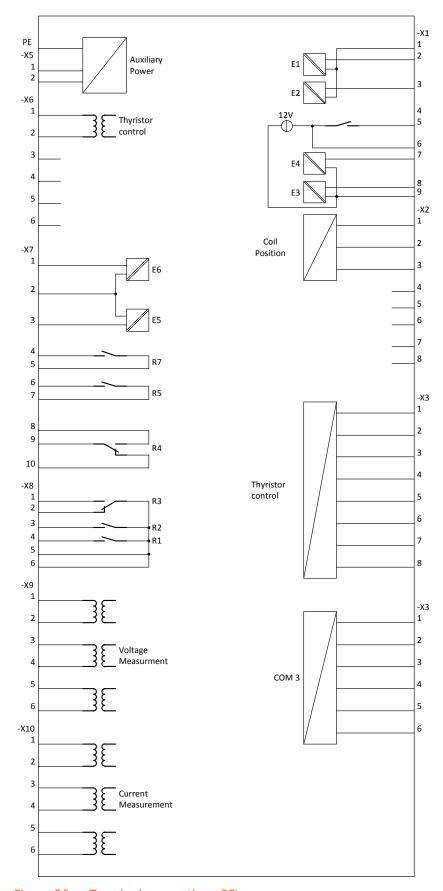


Figure 26: Terminal connections CCI

10.6 Terminal configuration CCI

10.6.1 Terminal strip – X1 binary inputs

Relay 6

Pin	Туре	Function	Comments
X1:1	Input	Root E1E2	Default: OFF
X1:2	Input	E2: SE-FUSE	max. 110 V
Λ1.2	Прис	Fuse monitoring	DC
X1:3	Input	E5: End switch low	Default: OFF
X1:4			NC
X1:5	Relay	R6: Binary output	Pot. 12 V DC
X1:6	Relay	+12 V Output	Pot. 12 V DC
X1:7	Input	E4: Binary input	max. 12 V DC
X1:8	Input	E3: Binary input	max. 12 V DC
X1:9	Input	Root E3E4	

10.6.2 Terminal strip – X2 potentiometer

Pin	Туре	Function	Comments
X2:1	AO	Potentiometer +	ca. +3 V
X2:2	Al	Potentiometer loop	
X2:3	AO	Potentiometer -	
X2:4			NC
X2:5	Al	reserved	
X2:6		reserved	
X2:7	AO	reserved	+/- 5 V
X2:8		reserved	

10.6.3 Terminal strip – X3 AC switch (Thyristor)

Pin	Туре	Function	Comments
X3:1		L1+	ca. +3 V
X3:2		(L2+)	
X3:3		L1-	
X3:4		(L2-)	NC
X3:5		Phase	
X3:6			
X3:7		+5 V	
X3:8		GND	

10.6.4 Terminal strip –X4 COM3 (RS 485) connection

Pin	Туре	Function	Comments
X4:1		GND_1a	Isolated
X4:2	DO	Tx +	
X4:3	DO	Tx -	
X4:4	DI	Rx +	NC
X4:5	DI	Rx -	
X4:6		GND_1	Isolated

10.6.5 LEDs on current feed-in controller

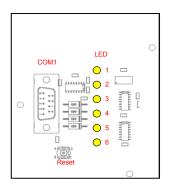


Figure 27: LED definitions current injection controller CCI

LED	Function	Status OK	Status error
1	U _{sync} measurement << 15 V	0	RED
2	U _{sync} Thyristors << 30V	0	RED
3		0	
4	Current injection active	GREEN	
5	PLL synchronized	GREEN	
6	Status current injection controller (CCI)	GREEN flashing	I

10.6.6 PE

Pin	Typ e	Function	Comments
1		PE	Protective earth

10.6.7 Terminal strip - X5: Power supply

Pin	Туре	Function	Comments
X5:1		L1 / +110 V DC	Supply voltage
X5:2		N / -110 V DC	

10.6.8 Terminal strip – X6: Synchronisation voltage Thyristor block

Pin	Туре	Function	Comments
X6:1		Connection L1	U _{L1} : 230 V AC
X6:2		Connection N	
X6:3		Not used	
X6:4		Not used	
X6:5		Not used	
X6:6		Not used	

Note:

Cabinets that we prefabricate come equipped with the connections.

10.6.9 Terminal strip – X7 relay range 1

Pin	Туре	Function	Comments
X7:1	Input	E6: End switch high	Default: OFF
X7:2	Input	Root end switch signal (E5E6)	
X7:3	Input	E5: End switch low	Default: OFF
X7:4	Relay	R7: freely programmable	Default: OFF
X7:5		R7: Root	
X7:6	Relay	R5: Motor lower	Default: OFF
X7:7		R5: Root	
X7:8	Relay	R4: Motor higher	Default: OFF
X7:9		R4: Root	
X7:10		R4: Not used	Default: OFF

Note:

The connections to X7 and X8 are redundant to the connections on the REG-DPA.

The wiring for the end switch and the motor contacts are directly done on the REG-DPA. This is why the connections for the current injection controller so not have to be configured.

10.6.10 Terminal strip – X8 relay range 2

Pin	Туре	Function	Comments
X8:1	Relay	R3: opens upon failure	Default: OFF
X8:2	Relay	R3: closes upon failure	
X8:3	Input	E5: End switch low	Default: OFF
X8:4	Relay	R7: freely programmable	Default: OFF
X8:5		R7: Root	
X8:6	Relay	R5: Motor lower	Default: OFF

10.6.11 Terminal strip – X9 inputs for voltage measurement

Pin	Туре	Function	Comments
X9:1		Usync_1	0100500 V AC
X9:2		Usync_2	Default: 500 V
X9:3		Une_GND	0100500 V AC
X9:4		Une	Default: 100 V
X9:5		Uod_Tr_GND	0100500 V AC
			Default: 100 V
X9:6		Uod_Tr	(Only for extended algorithm)

10.6.12 Terminal strip – X10 current inputs

Pin	Туре	Funct	ion	Comments
X10:1		PE		
X10:2		I1_a	s1_ I _{CI}	0151025 A AC
X10:3		l1_b	s2_ I _{CI}	Default: Current measured directly at CCI output
X10:4		12_a	s1_ I _s	0151025 A AC
X10:5		12_b	s2_ I _s	(Only for extended algorithm)
X10:6		13_a	s1_ I _F	0151025 A AC
X10:7		13_b	s2_I _F	(Only for extended algorithm)

11. WinEDC configuration and configuration software

The WinEDC software is used to configure and program the system. It can be used in three different modes.

In **Panel mode**, the regulator can be displayed and controlled using the mouse. All of the settings, which can be made directly on the regulator using its membrane keyboard, can be carried out centrally in WinEDC.

Parameter mode enables each of the components to be quickly and easily configured. The parameters are set in a straightforward tree structure, saved for later use or transferred to a bus participant. This guarantees an easy and clear operation and is particularly useful when E-coil controllers and EOR-D earth fault detection relays in the REGSys™product line are used together in a plant component.

Terminal mode enables direct communication with the system.

The WinEDC Terminal is much easier to use than conventional terminal programs and makes programming the system a lot easier.

WinEDC runs on all versions of Windows from Windows95 to Windows 8 in 32-bit and 64-bit.

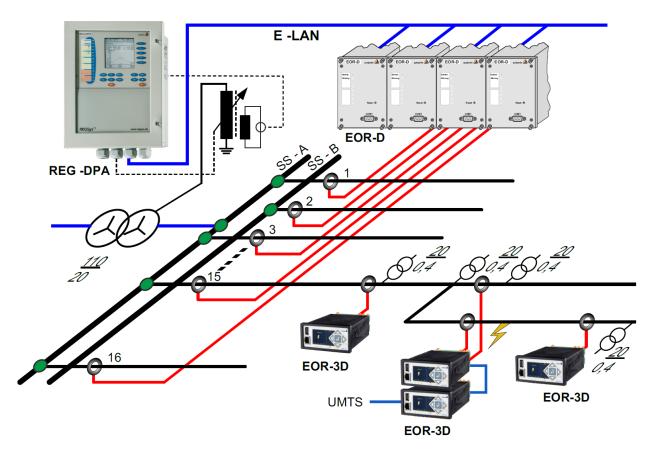


Figure 28: EORSys product range deployment

12. Order specifications

Please observe the following when placing an order:

- Only one unit can be ordered for codes with the same capital letter.
- When a code's capital letter is followed by the number 9, additional information in plain text is required.
- When a code's capital letter is followed only by zeroes the code may be omitted.
- X characteristics such as XL1 cannot be combined with all of the other characteristics. Please read the notes and explanations.

Characteristic	Code
Resonance regulator for Petersen coil	REG-DPA
resistance control, parallel control,	
Long-term recording and log book	
16 binary inputs (freely programmable)	
12 relay outputs (freely programmable), status relay,	
Current input (1 A or 5 A), COM 1, COM 2, COM 3 to connect a current injection	
WinEDC configuration software and connection cable (null modem)	

Note:

COM2 is used for protocol communication. Hence available for external use without interface cards only

Model	
In-panel mounting housing/ Wall-mounting housing (H x B x T) 307 x 250 x 102 mm	B01
DIN-Rail adapter	B02
Serial interface COM1	
• RS232	10
• USB	l1
Power supply	
external AC 85 V110 V264 V / DC 88 V220 V280 V	H1
external DC 18 V60 V72 V	H2
Parallel control	
communication over E-LAN	ко
Distributed controller and communication without E-LAN	K1
Measurement input	
additional current channel I2 (1 A or 5 A)	X18
Analogue outputs	
without	E00
 (please specify measurement range or scaling when placing the order) 	E90
 Output 1: Zero sequence voltage U₀ 	
 Output 2: Position of Petersen coil I_{pos} 	
 Output 3: Current through the P-coil Ip 	
with two analogue inputs, freely configurable.	504
• two analogue inputs, freely configurable (via background program).	E91
random combination of modules	E900

Page 30 Order specifications

Characteristic		Code
Control system connection		
without	(continue with characteristic "L")	XW00
IEC 60870-5-104/RJ45	(continue with characteristic "G")	XW90
IEC 60870-5-104 with Fiber Optic-connection	(continue with characteristic "G")	XW92
IEC 61850/RJ45	(continue with characteristic "G")	XW91
 IEC 61850 with Fibre Optic-ST connection 	(continue with characteristic "G")	XW93
 IEC 61850 with Fibre Optic-LC connection 	(continue with characteristic "G")	XW93.1
IEC 61850 with 2xRJ45 connection	(continue with characteristic "G")	XW94
 IEC 61850 with 2xFibre Optic ST connection 	(continue with characteristic "G")	XW95
 IEC 61850 with 2xFibre Optic-LC connection 	(continue with characteristic "G")	XW95.1
• IEC 61850 with 1xRJ45 und 1xFibre Optic-ST connection	(continue with characteristic "G")	XW96
• IEC 61850 with 1xRJ45 und 1xFibre Optic-LC connection	(continue with characteristic "G")	XW96.1
 DNP 3.0 via Ethernet with 1xRJ45 connection 	(continue with characteristic "G")	XW97
DNP 3.0 via Ethernet with 2xRJ45 connection	(continue with characteristic "G")	XW94.1
 DNP 3.0 via Ethernet with 1xFibre Optic connection 	(continue with characteristic "G")	XW98
 DNP 3.0 via Ethernet with 1xFO-LC connection 	(continue with characteristic "G")	XW98.1
 DNP 3.0 via Ethernet with 2xFO-ST connection 	(continue with characteristic "G")	XW95.2
 DNP 3.0 via Ethernet with 2xFO-LC connection 	(continue with characteristic "G")	XW95.3
DNP 3.0 via Ethernet with 1xRJ45;1xFO-ST connection	(continue with characteristic "G")	XW96.4
DNP 3.0 via Ethernet with 1xRJ45;1xFO-LC connection	(continue with characteristic "G")	XW96.5

Note:

If you want a differing protocol for delivery, please choose an additional hardware variant "XWxx" (then continue with feature "Vxx").

Inegrated protcol interface (IEC 60870-5-101/103, DNP)		
without (continue with characteristic "G")		
to connect the REG-DPA to a control center		
 to connect several devices to a control center (REG-DPA/D/DA/DP etc.) 		
Note:		
Characteristic L9 can only be combined with Z15Z19		
Connection type:		
• Copper		
- RS 232	V10	
 RS 485 2-wire operation only 	V11	
Fibre optic cable with FSMA connection technology, incl. fibreglass module		
Fibreglass (Wave length 800900 nm, range 2000 m)	V13	
Plastic (wave length 620680 nm, range 50 m)		
Fibre optic cable with ST connection technology, incl. fibreglass module		
Fibreglass (Wave length 800900 nm, range 2000 m)	V17	
Plastic (wave length 620680 nm, range 50 m)	V19	

Order specifications Page 31

Display language

German

English

Russian

Czechother

same as the operating manual

Characteristic	Code
Protocol	
 IEC 60870-5-103 for ABB 	Z10
 IEC 60870-5-103 for Areva 	Z11
 IEC 60870-5-103 for others 	Z90
 IEC 60870-5-101 for ABB 	Z15
 IEC 60870-5-101 for IDS 	Z17
 IEC 60870-5-101 for SAT 	Z18
 IEC 60870-5-101 for Siemens (LSA/SAS) 	Z19
 IEC 60870-5-101 für others 	Z91
DNP3	Z20
SPABUS	Z22
Modbus RTU	Z23
DCF Simulation via NTP and / or E-LAN extansion via Ethernet (CSE)	DCF / E-LAN
Note:	
only for IEC-61850 – other protocols on request	
User Manual	
• German	G1
English	G2
Russian	G6
• Czech	G8
• other	G9

Α0

Α1

Α2

A6 A8

Α9

Page 32 Order specifications

ACCESSORIES	CODE	
Current injection with two fixed frequencies	CIF	
(Supply voltage AC 230 V)		
Peak current injection with two fixed frequencies		HPCI
with additional use of pulse locating		
(Supply voltage AC 230 V)		
consists of Thyristor actuator, controller and inductance on mounting panel for 19" cabinet mounting	C1	C1
consists of Thyristor actuator, controller and inductance in standard mounting for indoor installation ca. $800 \times 800 \times 300 \text{ mm}$	C2	C2
consists of Thyristor actuator, controller and inductance in standard mounting for outdoor installation ca. $800 \times 800 \times 300 \text{mm}$	C3	C3
consists of Thyristor actuator, controller and inductance in standard mounting for outdoor installation (wall mounting) ca. $800 \times 800 \times 300 \text{ mm}$	C4	C4
Housing version is negotiable!	C9	C9

NOTE!

The current injection can only be used without restrictions if the measurement for the zero sequence voltage and the current are derived from the coil's primary winding. This means that the zero sequence voltage should not be measured on the E-coil itself.

ACCESSORIES	CODE
Female multipoint connector 1 (electrical connector model F)	
Female multipoint connector (for power input with advanced contacts)	
Female multipoint connector 3 (mixed connector model F24 + H7)	
Dummy panel 28 TE	
Dummy panel 14 TE	
Dummy panel 7 TE	
Dummy panel 8 TE	
PC connection cable (null-modem cable)	
Modem connection cable	
1 pack microfuses T2 L 250 V	
Time synchronisation:	
Radio clock DFC 77	111.9024.01
GPS radio clock NIS time, RS 485, Uh: AC 85110 V264 V / DC 88 V220 V280 V	111.9024.45
GPS radio clock NIS time, RS 485, Uh: DC 1860 V72 V	111.9024.46
GPS radio clock NIS time, RS 232, Uh: AC 85110 V264 V / DC 88 V220 V280 V	111.9024.47
GPS radio clock NIS time, RS 232, Uh: DC 1860 V72 V	111.9024.48
Communication:	
Develo MicroLink 56Ki analogue modem, DIN rail device incl. 230 V AC power supply	111.9030.03
TCP/IP adapter 10 Mbit REG-COM; DIN rail device including power supply 230 V AC	A01
TCP/IP adapter 10 Mbit REG-COM; plug-in module 8TE, 3HE;	A02
Power supply AC 85110 V264 V / DC 88 V220 V280 V	
TCP/IP adapter 10 Mbit REG-COM; plug-in module 8TE, 3HE;	A03
Power supply DC 1860 V72 V	

Order specifications Page 33

We take care of it.		
Notes		

Seite 34 Notes

Notes	

Notes Seite 35

A. Eberle GmbH & Co. KG

Frankenstr. 160 D-90461 Nuremberg

Tel.: +49 (0) 911 / 62 81 08-0 Fax: +49 (0) 911 / 62 81 08 99 E-Mail: info@a-eberle.de

http://www.a-eberle.de

Your sales partner:	

Copyright 2014 by A. Eberle GmbH & Co. KG

Subject to change without prior notice.