

SVG STATYCZNY GENERATOR MOCY BIERNEJ SVG ASTec®

Instrukcja montażu i obsługi wydanie III, 2024.11

Szanowni Państwo,

Dziękujemy za wybór Statycznego generatora mocy biernej SVG ASTec[®]. Nasze urządzenie pozwala na kompensację mocy biernej o charakterze indukcyjnym i pojemnościowym, redukcję wybranych wyższych harmonicznych oraz symetryzację obciążenia.

Dla własnego bezpieczeństwa, wygodnego użytkowania i prawidłowej konserwacji, przed instalacją i użytkowaniem, należy uważnie przeczytać niniejszą instrukcję i zachować ją do wykorzystania w przyszłości.

W przypadku awarii urządzenia nie należy go demontować, naprawiać samodzielnie ani przekazywać do nieautoryzowanego serwisu. W celu uzyskania dalszych instrukcji należy się skontaktować z działem obsługi technicznej poprzez wypełnienie formularza na stronie internetowej: https://astat.pl/reklamacje/.

Do Państwa dyspozycji oddajemy nasze doświadczenie oraz wysokiej jakości specjalistyczne rozwiązanie.

Z wyrazami szacunku,

Grupa Astat

Instrukcje bezpieczeństwa

Niniejsza instrukcja zawiera informacje dotyczące specyfikacji, montażu i obsługi Statycznego Generatora Mocy Biernej SVG ASTec®.

1. Przed instalacją należy przeczytać w całości niniejszą dokumentację.

⚠ Obsługa sprzętu w tym instalacja, uruchomienie, konserwacja, remonty i demontaż może być wykonywana przez wykwalifikowany personel. Surowo zabrania się obsługi sprzętu przez osoby inne niż personel techniczny i użytkownicy posiadający stosowne kwalifikacje.

▲ Nieautoryzowana zmiana nastaw, demontaż, usunięcie awarii lub wymiana części w tym zastosowanie nieoryginalnych komponentów, może mieć wpływ na wydajność pracy i bezpieczeństwo użytkowania sprzętu. Samodzielna ingerencja w urządzenie wiąże się z automatyczną utratą gwarancji.

▲ Przed załączeniem zasilania, należy upewnić się, że sprzęt został należycie uziemiony. Nieprawidłowe uziemienie może prowadzić do niewłaściwego działania urządzenia i stwarzać zagrożenie prażeniem prądem elektrycznym.

▲ Po wyłączeniu zasilania urządzenia, należy odczekać 10 minut przed rozpoczęciem demontażu obudowy i upewnić się, że napięcie szczątkowe kondensatora DC wewnętrznej jednostki magazynowania energii urządzenia zostało rozładowane, w przeciwnym razie może dojść do porażenia prądem elektrycznym.

▲ Niedozwolone jest zakrywanie otworów wentylacyjnych, urządzenie należy przechowywać i montować z dala od źródeł ciepła. Utrudniona wentylacja prowadzi do przegrzania i uszkodzenia urządzenia.

▲ Podczas transportu należy upewnić się, że urządzenie nie będzie narażone na bezpośrednie działanie deszczu, wysokiej temperatury, słonego otoczenia oraz otoczenia o wysokim zapyleniu.

▲ Niewłaściwe podłączenie urządzenia może prowadzić do naliczania dodatkowych opłat z tytułu ponadumownego poboru energii biernej.

SPIS TREŚCI

1. INSTALACJA I MOCOWANIE STATYCZNEGO GENERATORA MOCY BIERNEJ SVG ASTec [®]	5
1.2. Budowa i opis podstawowych elementów urządzenia	6
1.3. Wymiary i waga	7
1.4. Instalacja i mocowanie modułu naściennego	8
1.5. Oględziny końcowe	9
2. OKABLOWANIE ELEKTRYCZNE STATYCZNEGO GENERATORA MOCY BIERNEJ SVG ASTec®	.10
2.1. Wymagania podstawowe	. 10
2.2. Połączenie elektryczne	.10
3. OBSŁUGA INTERFEJSU STATYCZNEGO GENERATORA MOCY BIERNEJ SVG ASTec®	.13
3.1. Główny interfejs urządzenia	. 13
3.2. Zmiana nastaw	.19
4. TYPOWE BŁĘDY STATYCZNEGO GENERATORA MOCY BIERNEJ SVG ASTec® I ICH USUWANIE	.27
4.1. Błędy wyświetlane przez Statyczny Kompensator Mocy Biernej SVG ASTec i ich usuwanie	. 27
4.2. Najczęściej popełniane błędy podczas montażu i konfiguracji SVG	.28
5. KONSERWACJA STATYCZNEGO GENERATORA MOCY BIERNEJ SVG ASTec®	. 31

1. INSTALACJA I MOCOWANIE STATYCZNEGO GENERATORA MOCY BIERNEJ SVG ASTec®

1.1. Wymagania środowiskowe

Przed zainstalowaniem i użytkowaniem urządzenia należy sprawdzić, czy miejsce instalacji spełnia poniższe wymagania, aby uniknąć awarii urządzenia lub pogorszenia jego wydajności powodowanego czynnikami zewnętrznymi.

Rys. 1.1. Widok zewnętrzny modułu montowanego na ścianie

Miejsce instalacji musi uwzględniać rozpraszanie ciepła statycznego generatora mocy biernej. Przestrzeń instalacyjna musi spełniać minimalne wymagania dotyczące odległości od generatora, aby uniknąć problemów, takich jak zmniejszona wydajność operacyjna i spowodowane tym awarie sprzętu.

Statyczny generator mocy biernej w wykonaniu naściennym, czerpie powietrze poprzez dolne wloty wentylacyjne i wyprowadza ciepłe powietrze górnymi wylotami. Minimalne odległości od urządzenia do ściany, przeszkody lub innego urządzenia przedstawiono na rysunku oraz w tablicy.

Rys. 1.2. Minimalne odległości wentylacyjne urządzenia

Tab. 1.1. Minimalne odległości wentylacyjne urządzenia

Parametr	Wartość
[mm]	
X1	≥ 200
X2	≥ 300
Y	≥ 100

Ponadto należy przestrzegać poniższych wymagań:

- chronić przed nadmierną wilgocią i wysoką temperaturą,
- miejsce instalacji musi spełniać wymagania ochrony przeciwpożarowej,
- miejsce aplikacji urządzenia powinno pozwalać na swobodną instalację osobom wykonującym montaż oraz dla przeprowadzenia zewnętrznego oprzewodowania elektrycznego,
- w przypadku pomieszczeń o wysokim poziomie zapylenia, zalecane jest wykonanie instalacji wyciągowej w miejscu montażu urządzenia, aby uniknąć awarii sprzętu lub pogorszenia jego wydajności,
- miejsca montażu sprzętu należy wybrać z dala od materiałów łatwopalnych, wybuchowych i żrących, aby uniknąć uszkodzenia sprzętu.

1.2. Budowa i opis podstawowych elementów urządzenia

Przed zainstalowaniem i użytkowaniem urządzenia należy sprawdzić, czy miejsce instalacji spełnia wszystkie wymagania, aby uniknąć awarii urządzenia lub pogorszenia jego wydajności spowodowanego czynnikami zewnętrznymi.

Oznaczenie	Opis	Uwagi
1	Wyświetlacz LCD	Ekran dotykowy
2	Diody LED wskaźnika stanu	Wyświetlanie stanu pracy urządzenia
3	Wentylator chłodzący	Nie dotyczy wersji z chłodzeniem pasywnym
4	Kanał chłodzący	-
5	Zacisk wejściowy obwodu głównego	Zaciski śrubowe faz L1, L2, L3
6	Zacisk wejściowy przewodu neutralnego	Zacisk podwójny dla przewodu N
7	Miejsce przyłączenia przewodu ochronnego PE	Może być w różnych miejscach zależnie od mocy znamionowej urządzenia
8	Zaciski przyłączeniowe przekładników prądowych	11/11N, 12/12N, 13/13N
9	Zaciski obwodu pomocnicznego	Zasilanie pomocnicze 24 V DC Komunikacja RS485
10	Przełącznik DIP	Ustawienie adresu komunikacji
11	Kanał chłodzący	-
12	Element do montażu na ścianie	Montaż modułu naściennego

Tab. 1.3. Oznaczenie listew przyłączeniowych

Oznaczenie	Opis	Oznaczenie
1	Obwód główny SVG	L1 L2 L3
2	Przewód neutralny	Zacisk N
3	Przewód ochronny	PE
4	Wejście obwodów wtórnych przekładników prądowych	CT1 CT1N CT2 CT2N CT3 CT3N
5	Port komunikacyjny RS485	485A 485B 485A 485B
6	Zasilanie 24 V DC	24 V GND

Rys. 1.4. Oznaczenie listew przyłączeniowych

1.3. Wymiary i waga

Tab. 1.3. Wymiary i waga SVG

Тур	Мос	Wykonanie	Wymiary	Waga
	[kVAr]		[mm]	[kg]
SVG10WF	10	Naścienne z chłodzeniem pasywnym	550 x 160 x 423	ok. 16
SVG10	10	Naścienne z chłodzeniem mechanicznym	550 x 88 x 423	ok. 15
SVG20	20	Naścienne z chłodzeniem mechanicznym	550 x 88 x 423	ok. 15
SVG30	30	Naścienne z chłodzeniem mechanicznym	550 x 88 x 423	ok. 15
SVG50	50	Naścienne z chłodzeniem mechanicznym	558 x 122 x 503	ok. 22
SVG75	75	Naścienne z chłodzeniem mechanicznym	597 x 190 x 503	ok. 38
SVG100	100	Naścienne z chłodzeniem mechanicznym	608 x 220 x 503	ok. 43
SVG10 R	10	Rack	453 x 88 x 450	ok. 14
SVG20 R	20	Rack	453 x 88 x 450	ok. 14
SVG30 R	30	Rack	453 x 88 x 450	ok. 14
SVG50 R	50	Rack	472 x 122 x 540	ok. 21
SVG75 R	75	Rack	551 x 190 x 540	ok. 37
SVG100 R	100	Rack	608 x 220 x 540	ok. 42

Istnieje możliwość rozbudowy aplikacji o kolejne moduły łączone równolegle w celu zwiększenia prądu/mocy kompensacji.

1.4. Instalacja i mocowanie modułu naściennego

Mocowanie modułu statycznego generatora mocy biernej do ściany należy wykonać za pomocą dołączonych szyn montażowych. Urządzenie przeznaczone jest do pracy w pionie. Praca w pozycji przechylonej, obróconej lub poziomej jest niedozwolona.

Rys. 1.5. Szyny montażowe dla modułu montowanego na ścianie

Rys. 1.6. Podłączenie szyn montażowych do modułu urządzenia

50

50

Szyny montażowe są standardowym elementem mocującym, którego połączenie z modułem statycznego generatora mocy biernej wykonuje się za pomocą śrub.

Aby zamontować pojedynczy moduł, należy:

- zdjąć opakowanie transportowe,
- zamontować szyny montażowe do modułu urządzenia za pomocą śrub montażowych M4,
- przytwierdzić moduł urządzenia do ściany za pomocą śrub i kołków rozporowych, zgodnie z położeniem otworu montażowego w szynie.

1.5. Oględziny końcowe

Po zakończeniu montażu generatora mocy biernej, a przed jego załączeniem, należy sprawdzić:

- czy wszystkie śruby mocujące są dokręcone i ich nie brakuje, itp.,
- czy wszystkie przewody elektryczne są podłączone właściwie, nie są poluzowane i są poprowadzone w sposób zapewniający dostęp do samego urządzenia,
- kratki wentylacyjne i odprowadzanie ciepła przez urządzenie tj. czy nie ma zapchanych, niedrożnych elementów zapewniających właściwe odprowadzanie ciepła zarówno w samym urządzeniu, jak i w pomieszczeniu ruchu elektrycznego,
- czy nie ma pozostawionych narzędzi, materiałów lub śrub montażowych.

2. OKABLOWANIE ELEKTRYCZNE STATYCZNEGO GENERATORA MOCY BIERNEJ SVG ASTec®

2.1. Wymagania podstawowe

Przed wykonaniem połączenia elektrycznego między urządzeniem a zasilaniem należy określić parametry elektryczne systemu dystrybucji energii, aby upewnić się, że statyczny generator mocy biernej SVG jest kompatybilny z układem zasilającym i nie spowoduje uszkodzenia sprzętu ani awarii systemu zasilającego.

Tab. 2.1. Parametry systemu

Parametr	Wartość znamionowa / operacyjna
Napięcie	323 V - 460 V AC
Częstotliwość	50 Hz / 60 Hz ± 3%
Układ sieci	TN-S, trójfazowa, pięcioprzewodowa

Przed montażem urządzenia w miejscu docelowym należy zapewnić przestrzeń na prowadzenie przewodów zasilających oraz obwodów wtórnych przekładników prądowych. Zaleca się stosowanie listwy kontrolno-pomiarowej w obwodzie wtórnym przekładników, umożliwiającej zwieranie tych obwodów.

2.2. Połączenie elektryczne

Aby zapewnić prawidłowe działanie sprzętu i dobry efekt kompensacji, a także by uniknąć awarii generatora SVG lub wypadków projektowych i instrukcji instalacji urządzenia oraz zasad bezpiecznego montażu i obsługi.

Zaleca się podłączenie przekładników prądowych po stronie sieci dla układu z pojedynczym generatorem SVG, i po stronie obciążenia dla układu składającego się z kilku generatorów SVG.

Rys. 2.1. Podłączenie generatora SVG z przekładnikami od strony sieci zasilającej

Rys. 2.2. Podłączenie generatora SVG z przekładnikami od strony odbiorów

Należy spełnić następujące wymagania w zakresie podłączenia urządzenia:

- + kierunek montażu przekładników prądowych niskiego napięcia: P1 wskazuje stronę zasilania sieci, a P2 wskazuje stronę odbiorów,
- przekładnia prądowa przekładników zawiera się w dopuszczalnym zakresie od 50:5 do 6000:5 przy klasie nie gorszej niż 0,5; moc przekładnika prądowego należy dobrać uwzględniając długość oraz przekrój przewodów obwodu wtórnego,
- zaleca się stosowanie listwy kontrolno-pomiarowej w obwodzie wtórnym przekładników umożliwiając zwarcie tego obwodu.

Wartość prądu znamionowego zabezpieczenia dobrana została do prądu znamionowego urządzenia jako najbliższa pełna wartość z typoszeregu. Pominięte zostały dodatkowe straty mocy, wydzielane na wkładce topikowej z tytułu obecności prądów odkształconych, ze względu na znikome straty mocy czynnej w zabezpieczeniu. Przekrój przewodu obwodu głównego dobrano przy założeniu stosowania przewodów wielożyłowych w izolacji polwinitowej, przy założeniu temperatury otoczenia 30°C, bez uwzględnienia dodatkowych strat wynikających z przepływu prądów odkształconych oraz uwzględnieniu obciążenia czterech żył przewodu (współczynnik kf = 0,91).

Moc znamionowa urządzenia	Prąd znamionowy urządzenia	Rodzaj zabezpieczenia	Prąd znamionowy zabezpieczenia	Przekrój przewodu
[kVAr]	[A]		[A]	[mm ²]
10	14,4	NH gG	16	2,5
20	28,9	NH gG	32	6
30	43,3	NH gG	50	16
50	72,2	NH gG	80	25
75	108,3	NH gG	120	50
100	144,3	NH gG	160	95

Rys. 2.3. Schemat główny podłączenia generatora SVG

Rys. 2.4. Schemat podłączenia przekładników prądowych do generatora SVG

A Zaciski obwodów wtórnych przekładników prądowych S2 (CT1N, CT2N, CT3N) należy uziemić.

Po wykonaniu podłączenia elektrycznego należy sprawdzić i potwierdzić czy:

- wszystkie przewody są solidnie podłączone,
- wszystkie przewody są wyraźnie oznaczone, a rysunki elektryczne są właściwie przechowywane,
- zachowana jest właściwa rotacja faz w obwodzie zasilającym generator SVG,
- zachowana jest właściwa rotacja faz w obwodzie wtórnym przekładników prądowych,
- zachowana jest właściwa, wzajemna rotacja faz pomiędzy przewodami w obwodzie głównym i w obwodzie przekładników,
- brak jest przerwy w obwodzie wtórnym przekładników prądowych.

🛕 Niespełnienie powyższych wymagań grozi nieprawidłowym działaniem lub uszkodzeniem urządzenia.

3. OBSŁUGA INTERFEJSU STATYCZNEGO GENERATORA MOCY BIERNEJ SVG ASTec®

3.1. Główny interfejs urządzenia

Obsługa Statycznego Generatora Mocy Biernej odbywa się poprzez wbudowany wyświetlacz LCD. Umożliwia on sprawdzenie aktualnych nastaw urządzenia, parametrów sieci, zmianę parametrów kompensacji oraz zawiera informacje o aktualnym stanie urządzenia. Dodatkowo urządzenie wyposażone jest w dwie diody LED informujące o prawidłowej pracy kompensatora.

Statyczny generator mocy biernej załącza się automatycznie po podaniu napięcia trójfazowego. Po załączeniu ekran LCD przechodzi do interfejsu monitorowania stanu.

Rys. 3.1. Wygląd ekranu głównego sterownika

Główny interfejs składa się z dwóch części. Górna część zawiera informacje o stanie, typie, mocy znamionowej, trybie pracy urządzenia, ponadto tam wyświetlana jest aktualna data oraz godzina. Z kolei główna część pozwala na wybór modułu funkcyjnego: Parametry, Stan, Dane, Alarmy, Przebiegi, Informacje.

Należy kliknąć przycisk **Parametry**, aby nastawić parametry kompensacji generatora (hasło: 9345) lub parametry zaawansowane (hasło: 1801). Szczegóły opisano w rozdziale 3.2. Zmiana nastaw.

Należy kliknąć przycisk **Stan**, aby wyświetlić w czasie rzeczywistym dane elektryczne układu zasilania oraz obciążenia, a także dane eksploatacyjne sprzętu.

٩ST	ec	SVG/1 Kom.	10-0.4-W	2 - 9 -2024 Stan 🌰 A	14:35:18 darmy 🍊
V Sieci	235.6 V	238.2 V	239.2 V	V DC	649.2 V
I Sieci	15.2 A	22.8 A	13.5 A	Częst.	50.00 Hz
I obcią.	15.1 A	22.8 A	13.5 A	Punkt neu V	-1.1 V
I wyjścia	0.1 A	0.1 A	0.1 A	Obciążenie	1.1 %
PF obciąż.	-0.978	-0.978	-0.903		6
PF Sieci	-0.977	-0.976	-0.897		R
Menu		Reset	Nasi	ępny	Sart

Rys. 3.2. Interfejs **Stan** - ekran 1

AST	ec	SVG/10- Kom.	-0.4-W	2 - 9 -2024 14 an 🌰 Alar	4:35:23 my 🍊
Q obciąż	-3.2 A	-4.8 A	-5.9 A	Zmienn. DC	0.0 V
P obciąż	14.6 A	22.0 A	12.1 A	Zmienn. MPP	0.0 V
Q sieci	-3.3 A	-4.9 A	-5.9 A	Prąd N	12.4 A
P sieci	14.8 A	25.9 A	12.1 A		
THD obciąż	22.5 %	18.2 %	19.8 %		
THD Sieci	21.2 %	17.7 %	19.1 %		
Menu	R	eset	Nastęj	tty St	art

Rys. 3.3. Interfejs **Stan** - ekran 2

AST	SVG/10 Kom.	0-0.4-W 2 - 9 Stan	-2024 14:35:30 Alarmy 🌰
Q obciąż	-0.30 kVar	-0.66 kVar	-0.88 kVar
P obciąż	4.19 kW	6.00 kW	3.48 kW
Q sieci	-0.28 kVar	-0.64 kVar	-0.86 kVar
P sieci	4.28 kW	6.11 kW	3.56 kW
V THD	1.5 %	1.6 %	1.0 %
Menu	Reset	Następn	Start

Rys. 3.4. Interfejs **Stan** - ekran 3

Należy kliknąć przycisk Informacje aby wyświetlić w czasie rzeczywistym temperaturę pracy obwodów mocy dla poszczególnych faz.

Rys. 3.5. Interfejs Dane

Należy kliknąć przycisk Alarmy, aby wyświetlić w czasie rzeczywistym informacje o usterkach urządzenia lub przejrzeć historyczne usterki.

AST	C SVG/10 Kom.	-0.4-W 2 - 9 -: Stan 🍥	2024 14:33:12 Alarmy 🍎
FPGA	Temp	Częst.	LV sieci
LV DC	OV sieci	Wentylator	Wewn. Zas.
DC N	OLT	OI L2	OI L3
DC OV	Chwil. IL1	Chwil. IL2	Chwil. IL3
Menu	Rejestr	Reset	1/1

Rys. 3.6. Interfejs Alarmy

Rys. 3.7. Interfejs Alarmy - ekran Rejestr

Należy kliknąć przycisk Dane, aby wyświetlić w czasie rzeczywistym wartości prądu poszczególnych harmonicznych dla poszczególnych faz.

F	aza L1	Fazz	a L2	Faza L3	
Harm. L1	3	5	7	9	11
Obc. Prąd	2.3 A	2.0 A	0.9 A	0.9 A	0.3 A
Harm. L1	3	5	7	9	11
Prąd	2.1 A	1.8 A	0.7 A	0.9 A	0.4 A
Мепи	Poprzed	Ini	Następny		1/2

Rys. 3.8. Interfejs **Dane** - ekran 1

F	aza L1	Faz	a L2	Faza L3	3
Harm. L1	13	17	19	23	25
Obc. Prąd	0.0 A	0.0 A	0.0 A	0.0 A	0.0 A
Harm. L1	13	17	19	23	25
Sieć Prąd	0.3 A	0.3 A	0.1 A	0.1 A	0.1 A
Menu	Poptze	dni	Następn	R	2/2

Rys. 3.9. Interfejs **Dane** - ekran 2

Należy kliknąć przycisk **Przebiegi**, aby wyświetlić w czasie rzeczywistym przebiegi prądu obciążenia, wyjścia i sieci oraz napięcia, a także zawartość wyższych harmonicznych w prądzie przed i po kompensacji.

Rys. 3.10. Interfejs **Przebiegi** - ekran 1 – Krzywa I_{obc}.

Rys. 3.11. Interfejs **Przebiegi** - ekran 2 – Krzywa I_{wyjścia}

Rys. 3.12. Interfejs **Przebiegi** – ekran 3 – Krzywa I_{sieci}

Rys. 3.13. Interfejs **Przebiegi** - ekran 4 – Krzywa V

Rys. 3.14. Interfejs Przebiegi - ekran 5 – Rząd WH

3.2. Zmiana nastaw

3.2.1. Interfejs Parametry - menu podstawowe

Zmiany podstawowych nastaw parametrów urządzenia można dokonać w menu Parametry po wpisaniu hasła 9345.

Rys. 3.1. Interfejs do wprowadzania hasła

Min	-1e+10	Max	1c+10
9345			
7	8	9	Wyjście
4	5	6	<-
1	2	3	Wyczyść
	0		OK

Rys. 3.2. Okno wprowadzania hasła zabezpieczającego interfejs Parametry – menu podstawowe

٩ST	ec	SVG/1 Kom.	0-0.4-W	2 - 9 -2024 in 🌰 A	14:34 Jarmy	:04
Tryb	1	Asymetria	0 F	Przekładnia	80:	5
Pozycja CT	Sieć	∨ 1	Priorytet	Domyślne	~	0
Rząd WH	3	5	7	11	13	
Amplituda	0	0	0	0	0	
Menu	P	oprzedni	Następ	ny	1/3	

Tab. 3.1. Interfejs Parametry - menu podstawowe - ekran 1

Parametr	Opis
Priorytet	Domyślne – Brak priorytetu, wszystkie wytyczne są równorzędne. Kompensacja – Priorytet na kompensację, pozostałe działania są realizowane jeśli jest zapas mocy. Harmoniczne - Priorytet na filtrację wyższych harmonicznych, pozostałe działania są realizowane jeśli jest zapas mocy. Asymetria - Priorytet na symetryzację obciążenia, pozostałe działania są realizowane jeśli jest zapas mocy.
Rząd WH	Rząd harmonicznych do skompensowania
Amplituda	Współczynnik filtracji danej harmonicznej
Tryb	Tryb pracy urządzenia (0/1) 0 - ręczny 1 - autostart po podaniu napięcia
Przekładnia	Wartość prądu pierwotnego zewnętrznego przekładnika niskiego napięcia
Asymetria	Współczynnik symetryzacji: 0 - brak symetryzacji 50 - symetryzacja na poziomie 50% 100 - symetryzacja na poziomie 100%
Pozycja CT	Montaż przekładników prądowych: 0 - po stronie obciążenia 1 - po stronie sieci

AST ec	SVG/10 Kom.)-0.4-W 2 - 9 -202 Stan	4 14:34:10 Alarmy
K_Q	100	Pętla ster.	1
PF/Qind	990	PF2/Qpoj	990
Kod dostępu	9345	Korekcja fazy	0
Model	SVG/10-	0.4-W	
Menu Pe	oprzedni	Nastepny	2/3

Rys. 3.4. Interfejs **Parametry** – menu podstawowe – ekran 2

Tab. 3.2. Interfejs Parametry – menu podstawowe – ekran 2

Parametr	Opis
PF/Qind	Docelowa wartość prądu mocy biernej (nastawy 0-100) lub wartość współczynnika mocy (nastawy 800-999), dotyczy przypadku gdy odbiór ma charakter indukcyjny
Korekcja fazy	Korekta przesunięcia fazowego
Kod dostępu	Blokada nastaw – kod 9345 (ochrona przed zapisem)
Pętla sterowania	Kompensacja mocy biernej w pętli zamkniętej: 0 - domyślne ustawienie fabryczne, 1 - sterowanie w pętli zamkniętej przy montażu przekładników po stronie sieci
PF2/Qpoj	Docelowa wartość prądu mocy biernej (nastawy 0-100) lub wartość współczynnika mocy (nastawy 800-999), dotyczy tylko przypadku, gdy odbiór ma charakter pojemnościowy
Model	Model SVG

3.2.2. Interfejs Parametry – menu zaawansowane

- A Zabrania się wprowadzania nastaw w menu zaawansowanym bez autoryzacji dystrybutora.
- ▲ Wprowadzanie nieautoryzowanych zmian w tym menu grozi utratą gwarancji, nieprawidłowym działaniem lub zniszczeniem urządzenia.

Zmiany zaawansowanych nastaw parametrów urządzenia można dokonać w menu Parametry po wpisaniu hasła 1801.

Rys. 3.5. Okno wprowadzania hasła zabezpieczającego interfejs Parametry – menu zaawansowane

11
0
22

Rys. 3.6. Interfejs **Parametry** – menu zaawansowane – ekran 1

AST	ec	SVG/10- Kom.	0.4-W 2 Stan	- 9-2024	14:37:38 Alarmy 🏈
Rząd WH	13	17	19	23	25
Amplituda	0	0	0	0	0
Faza	26	34	38	46	50
Menu	Рор	rzedni	Następky		2/5

Rys. 3.7. Interfejs **Parametry** – menu zaawansowane – ekran 2

AST	ec	SVG/10- Kom.	0.4-W Stan	2 - 9 -2024	4 14:37:44 Alarmy 🍘
Rząd WH	2	4	8	0	
Amplituda	0	0	0	4	
Faza	4	8	3	150	
Menu	Рорг	zedni	Następn	A.	3/5

Rys. 3.8. Interfejs **Parametry** – menu zaawansowane – ekran 3

Tab.3.3. Interfejs Parametry – menu zaawansowane – ekran 1, 2, 3

Rys. 3.9. Interfejs Parametry - menu zaawansowane - ekran 4

Tab. 3.4. Interfejs Parametry - menu zaawansowane - ekran 4

Parametr	Opis
Tryb	Tryb pracy urządzenia (0/1) 0 - ręczny 1 - autostart po podaniu napięcia
Cel DC V	Wartość docelowa regulacji napięcia DC
Over V Thre.	Próg ochrony przed przepięciem
l Limit	Wartość graniczna prądu urządzenia
Over I Thre.	Próg zabezpieczenia nadprądowego
Low V Thre.	Próg ochrony przed zbyt niskim napięciem
K_Q	Współczynnik kompensacji mocy biernej 0 - brak kompensacji 100 - pełna kompensacja 78,88,98 oraz 79,89 i 99 mają dodatkowe znaczenie i nie należy ich ustawiać
Moc modułu	Pojemność znamionowa modułu
Adres	Konwersja dziesiętna/binarna powszechnie używanych adresów komunikacyjnych (kod 8421)
Priorytet	Priorytet pracy urządzenia: 0 - domyślne ustawienie fabryczne - brak priorytetu 1 - wskazuje priorytet kompensacji mocy biernej 2 - wskazuje priorytet redukcji wyższych harmonicznych
Moc całkowita	Pojemność znamionowa urządzenia
Przekładnia	Wartość prądu pierwotnego zewnętrznego przekładnika niskiego napięcia

Próg napięcia l	N 300	Próg temp1	75	Pręd.Went.	500
Próg I chw.	1700	Asymetria	0	Kod dostępu	9345
Rezerwa	100	Nast. Częst.	50Hz	Pozycja CT	1
PF/Qind	990	Korekcja fazv	0	Petla ster.	1

Rys. 3.10. Interfejs **Parametry** – menu zaawansowane – ekran 5

Tab. 3.5. Interfejs **Parametry** – menu zaawansowane – ekran 5

Parametr	Opis
Próg napięcia N	Próg ochrony dla wahań napięcia punktu środkowego w urządzeniu
Próg temp1	Próg zabezpieczenia przed przegrzaniem urządzenia
Temp Thre2	Próg zabezpieczenia przed przegrzaniem urządzenia
Próg I chw.	Próg zabezpieczenia przeciążeniowego dla prądu chwilowego
Asymetria	Współczynnik symetryzacji: 0 - brak symetryzacji, 50 - symetryzacja na poziomie 50%, 100 - symetryzacja na poziomie 100%
Kod dostępu	Blokada nastaw – kod 9345 (ochrona przed zapisem)
Nast. Częst.	Częstotliwość sieci 50 Hz lub 60 Hz
Pozycja CT	Montaż przekładników prądowych: 0 - po stronie obciążenia, 1 - po stronie sieci
PF/Qind	Docelowa moc bierna, ustawiana tylko w przypadku pojedynczego modułu lub montażu przekładników po stronie sieci
Korekcja fazy	Korekta przesunięcia fazowego
Pętla sterowania	Kompensacja mocy biernej w pętli zamkniętej: 0 - domyślne ustawienie fabryczne, 1 - sterowanie w pętli zamkniętej przy montażu przekładników po stronie sieci
Pręd. Went.	Prędkość wentylatorów – domyślna wartość 500

Strefa czasowa	Automatyczny start/stor
	1

Rys. 3.11. Interfejs **Parametry** – menu podstawowe – ekran 3

Należy kliknąć przycisk **Parametry** i dalej **Strefa czasowa**, aby ustawić datę w formacie dzień – miesiąc – rok oraz czas w formacie godziny – minuty - sekundy.

Kom.	Stan 🧼 Alarmy 🍘	
	$\bigcirc 0 \mathbf{D} \bigcirc 0 \mathbf{M} \bigcirc \mathbf{R}$	
	$0 \qquad \mathbf{h} \qquad 0 \qquad \mathbf{m} \qquad 0 \qquad \mathbf{s}$	
	ОК	

Rys. 3.12. Interfejs Parametry – menu podstawowe – ekran 3 – Strefa czasowa

Należy kliknąć przycisk Parametry i dalej Automatyczny start / stop, aby załączyć lub wyłączyć tę funkcję.

Pa	rametry automatyczne	go start/stop	
Autor	natyonzy start [%]	8 %	
Autor	natyczny stop [%]	5 %	
Inte	rwał pomiarowy	20 S	
	Załączony	OFF	

 $^{{\}it Rys.~3.13.}\ Interfejs\ {\it Parametry-menu}\ podstawowe-ekran~3-{\it Automatyczny~start/stop}$

Należy kliknąć przycisk **Parametry** i dalej **Ustawienie czasu pracy**, aby załączyć lub wyłączyć tę funkcję oraz ustawić harmonogram pracy urządzenia.

Rys. 3.14. Interfejs **Parametry** – menu podstawowe – ekran 3 – **Ustawienie czasu pracy** – ekran 3.1.

SVG/10-0.4-W Kom.	2 - 9 -2024 Stan	14:34:39 Alarmy	×
Czas rozp.1	8h 0m	Czas zak.1 13	h Om
Czas rozp.2	0h 0m	Czas zak.2 01	n0m
Czas rozp.3 (0h 0m	Czas zak.3 01	n 0m
Menu	Poprzedni	Nasterey	2/2

Rys. 3.15. Interfejs **Parametry** - menu podstawowe - ekran 3 - **Ustawienie czasu pracy** - ekran 3.2.

4. TYPOWE BŁĘDY STATYCZNEGO GENERATORA MOCY BIERNEJ SVG ASTec® I ICH USUWANIE

■ 4.1. Błędy wyświetlane przez Statyczny Kompensator Mocy Biernej SVG ASTec i ich usuwanie

Użytkownik może samodzielnie sprawdzić i rozwiązać niektóre typowe usterki i alarmy, jeżeli nie jest to możliwe, należy skontaktować się bezpośrednio z dystrybutorem. Tabela zawiera typowe usterki urządzenia Statycznego Generatora Mocy Biernej SVG ASTec® i sposoby ich usuwania.

Tah 41	Typowe błedy	Statycznego	Generatora	Mocy Rie	ernei SVG	ASTec [®] i ich	usuwanie
1au. 4.1.	Typowe biędy	Statycznego	Generatora	INIOCY DIE	ennej SvG7	ASTEC TICH	usuwanie

	Błędy i alarmy	Możliwa przyczyna	Rozwiązanie
FPGA	Rozróżnianie źródła alarmu	-	-
Over Heat	Nadmierna temperatura IGBT	1. Awaria wentylatora 2. Niska prędkość obrotowa 3. Zakurzenie elementu	1. Rozwiązywanie problemów z wentylatorami 2. Odkurzenie elementu 3. Ponowne powlekanie silikonem termicznym
Freq.	Błąd częstotliwości	1. Nieprawidłowa częstotliwość sieci 2. Problem z fazą napięcia	Sprawdzenie okablowania
Grid LV	Niskie napięcie sieci	1. Niskie napięcie sieci 2. Problem z bezpiecznikiem	Sprawdzenie napięcia sieci
DC LV	Niskie napięcie strony DC	1. Udar prądowy 2. Utrata napięcia w sieci	-
Grid OV	Przepięcie w sieci	Wysokie napięcie sieciowe (występuje również po wyłączeniu urządzenia)	-
Fan Err	Błąd wentylatora	1. Zablokowanie wentylatora 2. Trudne uruchamianie się wentylatora 3. Uszkodzenie wentylatora	 Sprawdzenie wentylatorów Czyszczenie wentylatorów z kurzu Wymiana wentylatorów
Power Err	Wewnętrzna awaria zasilania	-	Sprawdzenie płyty zasilającej
DC Neu	Usterka punktu środkowego prądu stałego	Odchylenie napięcia stałego, spowodowane udarem obciążenia lub usterką komponentu	Reset lub ponowne uruchomienie
OIA	Przekroczenie dopuszczalnej wartości prądu na fazie A	-	Reset lub ponowne uruchomienie Jeśli błąd występuje stale, sprawdzić parametry zabezpieczeniowe i ustawienia parametrów, a także stan sprzętu
OIB	Przekroczenie dopuszczalnej wartości prądu na fazie B	-	Reset lub ponowne uruchomienie Jeśli błąd występuje stale, sprawdzić parametry zabezpieczeniowe i ustawienia parametrów, a także stan sprzętu
OIC	Przekroczenie dopuszczalnej wartości prądu na fazie C	-	Reset lub ponowne uruchomienie Jeśli błąd występuje stale, sprawdzić parametry zabezpieczeniowe i ustawienia parametrów, a także stan sprzętu
DC OV	Przepięcie prądu stałego	Może to być spowodowane wpływem obciążenia lub szczytem napięcia sieci energetycznej.	Reset lub ponowne uruchomienie Jeśli błąd występuje stale, sprawdzić napięcie sieci energetycznej, parametry zabezpieczeń i stan sprzętu
Inst.OIA	Przeciążenie na fazie A	-	Reset lub ponowne uruchomienie Jeśli błąd występuje stale, sprawdzić parametry zabezpieczeniowe i ustawienia parametrów, a także stan sprzętu
Inst.OIB	Przeciążenie na fazie B	-	Reset lub ponowne uruchomienie Jeśli błąd występuje stale, sprawdzić parametry zabezpieczeniowe i ustawienia parametrów, a także stan sprzętu
Inst.OIC	Przeciążenie na fazie C	-	Reset lub ponowne uruchomienie Jeśli błąd występuje stale, sprawdzić parametry zabezpieczeniowe i ustawienia parametrów, a także stan sprzętu

4.2. Najczęściej popełniane błędy podczas montażu i konfiguracji SVG

4.2.1. Brak zgodności kolejności faz

Podczas montażu możliwe jest błędne podłączenie przewodów napięciowych, oznacza to, że faza oznaczona L1 w rzeczywistości nie jest pierwszą fazą, analogicznie taka sama sytuacja może wystąpić dla fazy L2 i L3. Istotne w tym wypadku są: kierunek wirowania faz i ich następstwo po sobie. Sygnał przedstawiający błąd to znak "-" występujący przed parametrem częstotliwość jak na rysunku poniżej:

AST	ec	SVG/10-	0.4-WNF	2 12-2024	17:44:27
V Sieci	231.7 V	231.9 V	234.9 V	V DC	633.5 V
I Sieci	49.3 A	55.0 A	46.0 A	Częst.	-49.99 Hz
I obcią.	49.4 A	54.9 A	45.9 A	Punkt neu V	0.3 V
I wyjścia	0.2 A	0.1 A	0.1 A	Obciążenie	1.2 %
PF obciąż.	-0.360	0.609	0.983		
PF Sieci	-0.363	0.600	0.985		
Menu		Reset	Nasi	ępny	Start

Rys. 4.3. Rys. Ekran przedstawiający parametry podczas błędnego podłączenia faz.

Aby usunąć błąd należy zacząć od sprawdzenia zgodności kolejności faz multimetrem lub analizatorem jakości energii elektrycznej. Następnie należy podpiąć przewody napięciowe w prawidłowy sposób.

4.2.2. Błędne podłączenie obwodów wtórnych przekładników

Kolejnym z najczęściej popełnianych błędów jest niewłaściwe podłączenie obwodów wtórnych przekładników. Najczęściej obwód wtórny S1 jest zamieniony z obwodem wtórym S2. Prawidłowy montaż został przedstawiony na rys. 2.4. Aby mieć pewność czy nie popełniono omawianego błędu, należy skontrolować znak (+ / -) przy wartości mocy czynnej P oraz mocy biernej Q, a także znak przy wartości PFobciąż. W przypadku braku instalacji fotowoltaicznej lub jej wyłączeniu, znak przy mocy czynnej P to "+". Zawsze należy skonfrontować znak wartości mocy czynnej i biernej z oczekiwanymi wartościami, mogącymi występować na danym obiekcie. Na rysunku poniżej przedstawiono sygnał o błędnym podłączeniu obwodów wtórnych przekładników S1 i S2 dla fazy L1:

431	ec	Kom. 🍈	St	an 🔵 Alar	my 🌔
Q obciąż	-10.6 A	9.6 A	8.2 A	Zmienn. DC	0.0 V
P obciąż	-43.8 A	56.5 A	54.4 A	Zmienn. MPP	$0.0 \mathrm{V}$
Q sieci	-10.8 A	9.4 A	8.3 A	Prąd N	94.8 A
P sieci	-43.6 A	56.6 A	54.9 A		
THD obciąż	12.9 %	10.1 %	9.0 %		
THD Sieci	12.6 %	10.1 %	9.3 %		
Menu	N	eser A	Naste	pny St	art

Rys. 4.4. Rys. Ekran przedstawiający błędne podłączenie obwodów wtórnych przekładników S1 i S2.

4.2.3. Brak zgodności faz prąd-napięcie

Brak zgodności faz prąd-napięcie oznacza, że prąd oraz napięcie nie są w tej samej fazie. W takim wypadku należy sprawdzić podłączenie przewodów zarówno napięciowych jak i prądowych pod kątem zgodności faz, tak aby odpowiednie przewody były wpięte w odpowiednie zaciski, co oznacza że IL1 jest w fazie z UL1, IL2 jest w fazie z UL2, IL3 jest w fazie w UL3. Na rysunku poniżej przedstawiono ekran wyświetlający parametry występujące podczas błędu związanego z brakiem zgodności faz prąd-napięcie. Brak zgodności pomiędzy różnymi fazami może powodować zmiany znaków wartości parametru P i Q dla każdej z faz w różnych konfiguracjach.

Δςτ	ec	SVG/10-0.4	-WNF	2 -12-2024 1	17:48:22
	CC	Kom. 🌔	St	an 🔵 Ala	irmy 🌔
Q obciąż	42.9 A	-42.5 A	8.3 A	Zmienn. DC	0.0 V
P obciąż	-40.3 A	-12.9 A	44.0 A	Zmienn. MP	P 0.0 V
Q sieci	43.2 A	-42.5 A	7.9 A	Prąd N	15.2 A
P sieci	-38.6 A	-13.2 A	44.3 A		
THD obciąż	10.2 %	12.5 %	11.5 %		
THD Sieci	9.8 %	12.1 %	11.1 %		
Menu	R	eset	Naste	DUA 2	start

Rys. 4.5. Rys. Ekran przedstawiający brak zgodności faz prąd-napięcie.

4.2.4 Błędna nastawa przekładni przekładników

Wpisana w nastawy kompensatora przekładnia inna niż rzeczywista przekładnia przekładników może powodować nieprawidłową kompensację mocy biernej, zarówno pojemnościowej jak i indukcyjnej. Zawsze należy sprawdzić czy wpisana nastawa przekładników jest zgodna z rzeczywistą.

5. KONSERWACJA STATYCZNEGO GENERATORA MOCY BIERNEJ SVG ASTec®

Personel dokonujący konserwacji Statycznego Generatora Mocy Biernej SVG ASTec[®] powinien posiadać odpowiednie kwalifikacje zawodowe i wystarczającą wiedzę z dziedziny elektrotechniki. W celu uniknięcia uszkodzenia oraz ryzyka porażenia prądem elektrycznym, wszystkie prace konserwacyjne i naprawcze sprzętu należy wykonywać przy skutecznie wyłączonym urządzeniu, co jest rozumiane jako wyłączenie zabezpieczenia głównego obwodu zasilającego generator.

🛕 Należy zabezpieczyć obwód zasilania przed przypadkowym załączeniem w trakcie dokonywania przeglądu lub naprawy urządzenia.

▲ Przy wykonywaniu pracy w obwodach pomiarowych należy pamiętać o zwarciu zacisków wyjściowych przekładników prądowych niskiego napięcia.

▲ Ponieważ Statyczny Generator Mocy Biernej SVG ASTec[®] wykorzystuje wewnątrz kondensatory DC przed wykonaniem prac konserwacyjnych i naprawczych sprzętu a po odcięciu zasilania urządzenia, należy odczekać 10 minut, aby upewnić się, że kondensatory są rozładowane.

⚠ Nie wolno otwierać modułu generatora bez pozwolenia, aby uniknąć obrażeń ciała i awarii sprzętu. Nieautoryzowany dostęp do wnętrza urządzenia grozi utratą gwarancji.

Czynności konserwacyjne powinny być przeprowadzane regularnie nie rzadziej niż raz na trzy miesiące i obejmować następujący zakres:

- sprawdzenie połączenia przewodów zasilających i pomiarowych,
- sprawdzenie nastaw,
- sprawdzenie rejestrów błędów,
- kontrola stanu wentylatorów, sprawdzenie czystości wlotów i wylotów powietrza. W przypadku braku należytej wentylacji może dojść do przegrzewania urządzenia i obniżenia skuteczności kompensacji.

Oględziny powinny być odnotowane w karcie przeglądów (Załącznik nr 1 do niniejszej instrukcji). Po wykonaniu czynności serwisowych należy upewnić się, że urządzenie powróciło do stanu pierwotnego, nie pozostawiono w pobliżu jego zacisków żadnych narzędzi, etc. Dopiero po sprawdzeniu tych warunków można ponownie załączyć generator.

Lp.	Data	Osoba	Stan urządzenia	Uwagi	Podpis
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					

